In Cote d’Ivoire, the failure of urban sewage systems is a crucial problem for the drainage of wastewater and rainwater. This failure is due to many factors and therefore, calls for diagnostic studies. The present study aimed at analyzing these networks in order to identify the dierent factors that contribute to the operational and structural degradation in selected sewerage and drainage networks in Abidjan, Cote d’Ivoire. The method used in the study involved semi-structured interviews, video camera inspection and socio-environmental field surveys (geographical survey and household survey), followed by descriptive statistics. The results revealed that many structural, environmental and behavioral practice contribute to the progressive degradation of urban sewage systems. These factors are essentially those that prevent the normal flow of wastewater in the pipes such as the illegal dumping of solid waste, the unauthorized connection of wastewater networks, unsustainable urban agricultural practices, as well as the high concentration of vegetation on both sides of the network and the dilapidated infrastructure of the wastewater and rainwater networks. It was found that these factors are at the origin of the clogging and degradation of the sewers since 85% of the residents used these sewers as a dumping ground for solid waste.
The failure of sewage and drainage systems in SubSaharan African cities is frequent and can be considered as a critical issue, both from an environmental standpoint and in terms of associated maintenance costs. This study analyzes the state of the sanitation systems, the elements behind the failures, the environmental concepts used to classify the problems, and the tools and methodological alternatives for ranking the various management solutions. This research illustrates the causes that contribute to the dysfunctions in the sewage systems of Abidjan as a typical example of sewerage systems management challenges in SubSaharan Africa’s large cities. Poor solid waste and wastewater management practices by residents, e.g., illegal dumping of solid waste into the sewers, unauthorized and defective connections to the network, structural dysfunctions related to the age of the network (cracked, denuded, or broken), urban agriculture in the vicinity of the channels, natural phenomena such as erosion, landslides in the undeveloped parts, and the high concentration of vegetation in the network, wholly contribute to the degradation of the network. A variety of decision support systems for the management of the assets of the urban sewage network were presented. The instruments have been categorized based on their capacity and functionality. The operating concept of each of these tools has been outlined, as well as their respective data needs. In addition, the study analyzes challenges related to the usage of existing decision support systems and provides an outlook on future research requirements in this area. This study offers a detailed analysis of the issues of sanitation management and could serve as a reference for other emerging nations in SubSaharan Africa.
Case studies / Institutions / Models / Decision support systems / Sanitation / Wastewater / Solid wastes / Cities / Urban areas / Management techniques / Policies / Drainage systems / Sewerage Record No:H051899
The Indo-Gangetic Plains (IGP) in north-west (NW) India are facing a severe decline in ground water due to prevalent rice-based cropping systems. To combat this issue, conservation agriculture (CA) with an alternative crop/s, such as maize, is being promoted. Recently, surface drip fertigation has also been evaluated as a viable option to address low-nutrient use efficiency and water scarcity problems for cereals. While the individual benefits of CA and sub-surface drip (SSD) irrigation on water economy are well-established, information regarding their combined effect in cereal-based systems is lacking. Therefore, we conducted a two-year field experiment in maize, under an ongoing CA-based maize-wheat system, to evaluate the complementarity of CA with SSD irrigation through two technological interventions–– CA+ (residue retained CA + SSD), PCA+ (partial CA without residue + SSD) – at different N rates (0, 120 and 150 kg N ha-1) in comparison to traditional furrow irrigated (FI) CA and conventional tillage (CT) at 120 kg N ha-1. Our results showed that CA+ had the highest grain yield (8.2 t ha-1), followed by PCA+ (8.1 t ha-1). The grain yield under CA+ at 150 kg N ha-1 was 27% and 30% higher than CA and CT, respectively. Even at the same N level (120 kg N ha-1), CA+ outperformed CA and CT by 16% and 18%, respectively. The physiological performance of maize also revealed that CA+ based plots with 120 kg N ha-1 had 12% and 3% higher photosynthesis rate at knee-high and silking, respectively compared to FI-CA and CT. Overall, compared to the FI-CA and CT, SSD-based CA+ and PCA+ saved 54% irrigation water and increased water productivity (WP) by more than twice. Similarly, a greater number of split N application through fertigation in PCA+ and CA+ increased agronomic nitrogen use efficiency (NUE) and recover efficiency by 8–19% and 14–25%, respectively. Net returns from PCA+ and CA+ at 150 kg N ha-1 were significantly higher by US$ 491 and 456, respectively than the FI-CA and CT treatments. Therefore, CA coupled with SSD provided tangible benefits in terms of yield, irrigation water saving, WP, NUE and profitability. Efforts should be directed towards increasing farmers’ awareness of the benefits of such promising technology for the cultivating food grains and commercial crops such as maize. Concurrently, government support and strict policies are required to enhance the system adaptability.
Gaining insight into the food sourcing practices of cities is important to understand their resilience to climate change, economic crisis, as well as pandemics affecting food supply and security. To fill existing knowledge gaps in this area food flow data were collected in four West African cities - Bamako (Mali), Bamenda (Cameroon), Ouagadougou (Burkina Faso), and Tamale (Ghana). The data cover, depending on the city, road, rail, boat, and air traffic. Surveys were conducted for one week on average during the peak harvest, lean, and rainy seasons, resulting in a dataset of over 100,000 entries for 46 unprocessed food commodities. The data collected includes information on the key types of transportation used, quantity, source, and destination of the food flows. The data were used to delineate urban foodsheds and to identify city-specific factors constraining rural-urban linkages. The data can also be employed to inform academic and policy discussions on urban food system sustainability, to validate other datasets, and to plan humanitarian aid and food security interventions.
Modes of transport / Virtual water / Food products / Food security / Datasets / Cities / Markets / Commodities / Food systems / Rural-urban food supply chains Record No:H051896
Micronutrient deficiency remains an enormous problem in refugee settings. Transforming refugees’ food systems through the scaling up of kitchen gardening and fortifying relief food crops with minor food components including nutrient-dense spices can help improve the quality of staple foods. Globally, spices are indispensable in the daily diet and play an important role in the socio-cultural setting of different communities. Forty turmeric and curry powder samples were collected from different market establishments and geographic locations in East Africa. The samples were analyzed for selected elements using Portable X-Ray Fluorescence (PXRF). The contents of potassium (K), calcium (Ca), zinc (Zn) and strontium (Sr) in turmeric powder were statistically different among geographic origins (Ethiopia, Kenya and Uganda). We also aimed to determine if a small portion of spices (turmeric (5 g) and curry (4 g)) would contribute to an adequate intake (AI) or recommended dietary allowance (RDA) for selected minerals, for refugee men and women aged between 19 and 50 years as defined by the Food and Nutrition Board of the Institute of Medicine (IOM). For the reference groups, the contributions of turmeric and curry powder to AI/RDA for K, Ca and Zn varied between 0.48 to 4.13%. On the other hand, turmeric was identified to contribute gt; 20% AI/RDA for refugee men and women aged between 19 and 50 years for two micro minerals: manganese (Mn) and iron (Fe). Considering turmeric and curry powder of East African origins are good sources of minerals and present acceptable toxic metal(loid)s loads coupled with low cost, these spices particularly turmeric should be more widely popularized and recommended for food-to-spice fortification among the refugee population located in East Africa.
Multilateral development banks (MDBs) play a pivotal role in financing water and sanitation infrastructure projects and thus have a major impact on the development of basic services. Although information about the MDBs’ investments is publicly available, it is dispersed and not easily comparable. A comprehensive compilation of MDBs’ water and sanitation investments has long been lacking. To address this gap, we assess water and sanitation financing by the three MDBs most relevant to Africa and Asia between 1960 and 2020: the World Bank, the African Development Bank, and the Asian Development Bank. We compile a new dataset by drawing on 3,639 water and sanitation projects and assess territorial trends, technology choices, distribution of financial burdens, and reforms to institutional arrangements. We find that MDBs’ investments align with changing patterns of urbanization and increasingly finance sanitation infrastructures including non-sewered technologies. However, our results also suggest that institutional reforms have addressed utility efficiency through investment in equipment and skills rather than through increased commercialization and private sector participation. The leverage effect of MDB investment on private financing is negligible, whereas co-financing from local governments dominates.
Policies / Public-private partnerships / Institutional reform / Investment / Development banks / Multilateral organizations / Goal 6 Clean water and sanitation / Sustainable Development Goals / Water supply Record No:H051889
Various precipitation-related studies have been conducted on the Yangtze River. However, the topography and atmospheric circulation regime of the Source Region of the Yangtze River (SRYZ) differ from other basin parts. Along with natural uniqueness, precipitation constitutes over 60% of the direct discharge in the SRYZ, which depicts the decisive role of precipitation and a necessary study on the verge of climate change. The study evaluates the event distribution of long-term variability in precipitation classes in the SRYZ. The precipitation was classified into three precipitation classes: light precipitation (0–5 mm, 5–10 mm), moderate precipitation (10–15 mm, 15–20 mm, 20–25 mm), and heavy precipitation (gt;25 mm). The year 1998 was detected as a changing year using the Pettitt test in the precipitation time series; therefore, the time series was divided into three scenarios: Scenario-R (1961–2016), the pre-change point (Scenario-I; 1961–1998), and the post-change point (Scenario-II; 1999–2016). Observed annual precipitation amounts in the SRYZ during Scenario-R and Scenario-I significantly increased by 13.63 mm/decade and 48.8 mm/decade, respectively. The same increasing trend was evident in seasonal periods. On a daily scale, light precipitation (0–5 mm) covered most of the days during the entire period, with rainy days accounting for 83.50%, 84.5%, and 81.30%. These rainy days received up to 40%, 41%, and 38% of the annual precipitation during Scenario-R, Scenario-I, and Scenario-II, respectively. Consequently, these key findings of the study will be helpful in basin-scale water resources management.
Vegetation / Dry spells / Hydrological factors / Time series analysis / Drought / Rainfall / Rivers / Trends / Precipitation / Climate change Record No:H051888
Evaluation of the hydrological impact of urbanization-induced land use land cover (LULC) changes for medium to large catchments is still an important research topic due to the lack of evidence to conclude about how local changes translate to impacts across scales. This study aims to provide evidence on the effects of LULC change on the streamflow of the Akaki catchment that hosts Addis Ababa, the capital city of Ethiopia. Since the comparative performance of classification algorithms is poorly understood, we compared the performance of one parametric and five non-parametric machine learning methods for LULC mapping using Landsat imageries. To investigate the effect of LULC changes on streamflow, a semi-distributed HEC-HMS model was calibrated and validated using daily discharge data at multiple sites. Findings of this study showed that: (i) the accuracy of classification and regression tree (CART) was superior to the other classifiers, (ii) from 1990 to 2020, urban and forest cover increased at the expense of agricultural and bare land, (iii) the performance of the HEC-HMS model was acceptable at all stations during both the calibration and validation periods, and (iv) the mean annual and main rainy seasonal streamflow of the catchment experienced significant increases due to LULC change but the simulated streamflow changes highly varied with the type of LULC classifier. This study contributes to the limited evidence on how catchments, with rapidly developing cities are prone to hydrological regime changes that need to be recognized, understood and quantified, and incorporated into urban planning and development.
Models / Machine learning / Hydrological factors / Reservoirs / Rivers / Urbanization / Stream flow / Catchment areas / Land cover change / Land use change Record No:H051886
Digital innovations and interventions can potentially revolutionize agri-food systems, especially in coping with climate challenges. On a similar note, digital research tools and methods are increasingly popular for the efficient collection and analysis of real-time, large-scale data. It is claimed that these methods can also minimize subjective biases that are prevalent in traditional qualitative research. However, given the digital divide, especially affecting women and marginalized communities, these innovations could potentially introduce further disparities. To assess these contradictions, we piloted SenseMaker, a digital ethnography tool designed to capture individual, embodied experiences, biases, and perceptions to map vulnerabilities and resilience to climate impacts in the Gaya District in Bihar. Our research shows that this digital tool allows for a systematic co-design of the research framework, allows for the collection of large volumes of data in a relatively short time, and a co-analysis of the research data by the researchers and the researched. This process allowed us to map and capture the complexities of intersectional inequalities in relation to climate change vulnerability. However, we also noted that the application of the tool is influenced by the prior exposure to technology (digital devices) of both the enumerators and researched groups and requires significant resources when implemented in contexts where there is a need to translate the data from local dialects and languages to more dominant languages (English). Most importantly, perceptions, positionalities, and biases of researchers can significantly impact the design of the tool’s signification framework, reiterating the fact that researcher bias persists regardless of technological innovations in research methodology.
Social aspects / Technology / Transdisciplinary research / Agriculture / Women / Gender / Marginalization / Communities / Vulnerability / Climate change / Ethnography Record No:H051885
Research and policy analyses of climate change adaptation in Africa are often centre to examine adjustments in agricultural operations. This mainly bases on a misconception that rural households merely depend on agriculture for their livelihoods. This research aimed at positioning livelihood (farm and non-farm activities) as the centre of climate adaptation strategies to better understand rural households’ adaptation strategic options and capacities, using two rural communities in the Northern highlands of Ethiopia. The result showed that rural households have broader options both in farm and non-farm strategies for combating adverse climate condition than previously reported. A strong and positive association are found between wealth indicators such as farm size (0.08) and productive assets (0.0917) with farm-level adaptation strategies such as short maturing crop and irrigation. Non-farm adaptation strategies (such as business activities and wage employment) are, mainly, influenced by household demographic characteristics such as age of the household head (0.01) and adult household size (0.09). This indicates that there is no specific adaptation strategy panacea for rural households. Rather, rural households use a mix of strategies to meet the particular agro-ecological settings (for farm-level adaptation strategies), and infrastructure and the location of the community, which enable to access market and other services (for non-farm adaptation strategies). Thus, national level climate policies and strategies need to be tailored to address the specific agro-ecology, and infrastructure of the local area and the socio-economic context of the households in the two communities. In this regard, the different levels of government and nongovernmental organizations should provide more adaptation measures on agricultural extension services, access to loans, roads, transport, market, knowledge and creation of wage employment and business opportunities in the vicinity of rural communities and its surrounding towns.
Study region: The Amu Darya River (ADR) basin in Central Asia.
Study focus: To understand the spatiotemporal patterns and underlying driving mechanisms of river salinization in arid environments, this study gathered 50 years (1970–2019) of water chemistry data from 12 locations along the ADR. The variations in discharge and salinity were assessed by a linear regression model and violin plot. The salinity-discharge relationships were evaluated by a general hyperbolic model and Spearman’s rank correlation coefficient. Random forest models were also constructed to identify the predominant drivers of river water salinization. Finally, a conceptual model of river water salinization was constructed.
New hydrological insights for the region: The water salinity (S) in the upper stream of the ADR was 541–635 mg/L. Salinity showed an increasing trend along the river course, reaching 751–1560 mg/L downstream. In the downstream, the river salinity before the 1990 s (751–1128 mg/L) was slightly lower than that after the 1990 s (983–1560 mg/L). Generally, water salinity was notably correlated with river discharge (Q) in upstream, exhibiting a relationship of S= 17,497Q- 0.62, p lt; 0.05, before the 1990 s. Interannual variation in river salinity is mainly controlled by secondary salinization, and intra-annual variation is controlled by river flow. From upstream to downstream, the controlling salinization process changes from primary salinization to secondary salinization. Specifically, secondary salinization has accelerated due to intensified agricultural activities in recent years.
A third of the land on the Earth is composed of grasslands, mainly used for forage. Much effort is being conducted to develop tools to estimate grassland productivity (GP) at different extents, concentrating on spatial and seasonal variability pertaining to climate change. GP is a reliable indicator of how well an ecosystem works because of its close connection to the ecological system equilibrium. The most commonly used proxies of GP in ecological studies are aboveground biomass (AGB), leaf area index (LAI), canopy storage capacity (CSC), and chlorophyll and nitrogen content. Grassland science gains much information from the capacity of remote sensing (RS) techniques to calculate GP proxies. An overview of the studies on RS-based GP prediction techniques and a discussion of current matters determining GP monitoring are critical for improving future GP prediction performance. A systematic review of articles published between 1970 and October 2021 (203 peer-reviewed articles from Web of Science, Scopus, and ScienceDirect databases) showed a trend in the choice of the sensors, and the approaches to use are largely dependent on the extent of monitoring and assessment. Notably, all the reviewed articles demonstrate the growing demand for high-resolution sensors, such as hyperspectral scanners and computationally efficient image-processing techniques for the high prediction accuracy of GP at various scales of application. Further research is required to attract the synthesis of optical and radar data, multi-sensor data, and the selection of appropriate techniques for GP prediction at different scales. Mastering and listing major uncertainties associated with different algorithms for the GP prediction and pledging to reduce these errors are critical.
Vegetation index / Nitrogen content / Chlorophylls / Canopy / Above ground biomass / Leaf area index / Ecosystem services / Techniques / Monitoring / Estimation / Remote sensing / Prediction / Productivity / Grasslands Record No:H051841
The Middle East and North Africa (MENA) region is suffering from severe water scarcity. Decision-makers in MENA are tackling this challenge by tapping the potential of reusing treated wastewater in agriculture so that large volumes of freshwater sources can be released for priority domestic needs. This aligns with the global efforts to make wastewater reuse mainstream in developing countries by overcoming the technological, infrastructural, health, and socio-cultural barriers that are limiting the expansion of wastewater reuse in agriculture. In this regard, this paper analyses the management modalities of wastewater reuse practices in agriculture in MENA by studying two case studies from Egypt and Jordan. The result of this analysis is a proposed decision-tree tool to help decision-makers in making optimal wastewater reuse decisions based on contextual factors including agricultural field demands, location, freshwater resources, sanitation coverage, and infrastructure, as well as regulations, policies, and restrictions for wastewater reuse. The decision-tree framework was operationalized and validated using the two case studies. The decision tree proved to be an effective framework in assisting decision-makers in making the optimum choice for wastewater reuse in agriculture. It aided the decision maker in evaluating potential reuse options and selecting between several courses of action.
Case studies / Institutions / Stakeholders / Wastewater treatment / Irrigation water / Agriculture / Wastewater irrigation / Decision making / Wastewater management / Water reuse Record No:H051840
Nitrate is globally the most widespread and widely studied groundwater contaminant. However, few studies have been conducted in sub-Saharan Africa, where the leaching potential is enhanced during the rainy monsoon phase. The few monitoring studies found concentrations over drinking water standards of 10 mg N-NO3 - L -1 in the groundwater, the primary water supply in rural communities. Studies on nitrate movement are limited to the volcanic Ethiopian highlands. Therefore, this study aimed to evaluate the transport and fate of nitrate in groundwater and identify processes that control the concentrations. Water table height, nitrate, chloride, ammonium, reduced iron, and three other groundwater constituents were determined monthly in the groundwater in over 30 wells in two contrasting volcanic watersheds over two years in the Ethiopian highlands. The first watershed was Dangishta, with lava intrusion dikes that blocked the subsurface flow in the valley bottom. The water table remained within 3 m of the surface. The second watershed without volcanic barriers was Robit Bata. The water table dropped rapidly within three months of the end of the rain phase and disappeared except near faults. The average nitrate concentration in both watersheds was between 4 and 5 mg N-NO3 - L -1 . Hydrogeology influenced the transport and fate of nitrogen. In Dangishta, water was blocked by volcanic lava intrusion dikes, and residence time in the aquifer was larger than in Robit Bata. Consequently, nitrate remained high (in several wells, 10 mg N-NO3 - L -1 ) and decreased slowly due to denitrification. In Robit Bata, the water residence time was lower, and peak concentrations were only observed in the month after fertilizer application; otherwise, it was near an average of 4 mg N-NO3 - L -1 . Nitrate concentrations were predicted using a multiple linear regression model. Hydrology explained the nitrate concentrations in Robit Bata. In Dangishta, biogeochemistry was also significant.
Climate variability and insufficient irrigation are primary constraints to stable and higher agricultural productivity and food security in Nepal. Agriculture is the largest global freshwater user, and integration of surface- and ground-water use is frequently presented as an strategy for increasing efficiency as well as climate change adaptation. However, conjunctive management (CM) planning often ignores demand-side requirements and a broader set of sustainable development considerations, including ecosystem health and economics of different development strategies. While there is generic understanding of conjunctive use, detailed technical knowhow to realize the CM is lacking in Nepal. This article presents a holistic framework through literature reviews, stakeholders consultations and expert interviews for assessing CM and implementation prospects from a systems-level perspective. We demonstrate the framework through a case study in Western Nepal, where climatic variability and a lack of irrigation are key impediments to increased agricultural productivity and sustainable development. Results show that knowledge of water resources availability is good and that of water demand low in the Western Terai. Additional and coordinated investments are required to improve knowledge gaps as well as access to irrigation. There is therefore a need to assess water resources availability, water access, use and productivity, to fill the knowledge gaps in order to pave pathways for CM. This paper also discusses some strategies to translate prospects of conjunctive management into implementation.
Case studies / Capacity development / Awareness / Social inclusion / Gender equity / Stakeholders / Water governance / Energy sources / Monitoring / Strategies / Planning / Sustainable Development Goals / Agricultural productivity / Food security / Water policies / Water productivity / Water demand / Water availability / Surface water / Groundwater / Climate change / Irrigation systems / Conjunctive use / Water use / Water management / Water resources Record No:H051837
This study employed geomorphometric analysis to characterize the four major watersheds (Gilgel Abay, Gumara, Rib, and Megech) of Lake Tana sub-basin, Ethiopia, and prioritize the watersheds for the implementation of SWC practices using GIS and remote sensing techniques. Also, the study analyzed streamflow and sediment data recorded at the outlets of each watershed to associate the geomorphometric prioritization result with recordings of the watersheds. Geomorphometric analysis results indicated that the Rib watershed is the most susceptible watershed for soil erosion and should be prioritized for the implementation of SWC practices. The analysis of streamflow and suspended sediment concentration suggest that the Rib watershed had the second maximum sediment yield (14.3 t ha-1 yr-1) compared to the other three watersheds. This is because of the low streamflow response of the watershed compared with the Gumara watershed which had the highest sediment yield (18.9 t ha-1 yr-1).
Lakes / Resuspended sediments / Soil erosion / Remote sensing / Geographical information systems / Water conservation / Soil conservation / Watersheds Record No:H051832
Despite widespread recognition of the importance of data exchange in transboundary waters’ management, there is growing evidence that data exchange is falling short in practice. A possible explanation may be that data exchange occurs where and when it is needed. Needs for data exchange in shared waters, nonetheless, have not been systematically assessed. This paper evaluates data exchange needs in a set of transboundary basins and compares such needs with evidenced levels of data exchange. Our findings indicate that it may be possible to accelerate data exchange by identifying and promoting the exchange of data that respond to palpable need and serve practical use.
Environmental factors / Hydropower / Agriculture / Water supply / Urban areas / Water quality / Treaties / International agreements / Water management / Water resources / Assessment / Information exchange / Data / River basins / Transboundary waters Record No:H051831
Jordan’s water scarcity prompted a national plan whereby treated wastewater is utilized to amend agricultural irrigation water so as to reallocate freshwater to urban/domestic uses. The policy, however, has engendered farmers’ resistance in the Northern Jordan Valley (NJV), causing a stalemate in putting new infrastructure into operation. This research investigated the socio-economic causes of farmer resistance and contestation, and examined the government’s institutional approach to overcome the challenges. We found that the perceived risks of wastewater reuse such as salinization and restrictions from international markets figure prominently in the farmers resistance. As yet, farmers have managed to avoid the shift to treated wastewater use by using the political agency of elite farmers who control the Water Users Associations. These same farmers have adopted informal water access practices to overcome freshwater shortages. At the same time, small producers who don’t have possibilities to access extra water and with less political clout seem more willing to irrigate with treated wastewater. We conclude that understanding the heterogeneous context in which the envisioned wastewater users operate is key to predicting and solving conflicts that arise in treated wastewater reuse projects.
Socioeconomic aspects / Farmers / Water user associations / Stakeholders / Water policies / Water scarcity / Urban areas / Water management / Infrastructure / Irrigation water / Freshwater / Water allocation / Water reuse / Wastewater irrigation Record No:H051830
Conservation of forest ecosystem is fundamental for economic-ecological sustainability. Indian Sundarbans provide several ecosystem services, which needs sustainable exploitation since forest dwellers are heavily dependent on the forest. In our study, we attempt to estimate the option value of the forest dwellers through a non-market based valuation technique. Using contingent valuation, we seek to estimate the contribution forest fringe dwellers are ready to provide for restoration and conservation of the ecosystem services. Assuming a random utility framework, mean willingness to pay is estimated from the forest dwellers’ responses to the Dichotomous Choice bidding as well as open-ended bidding question using socio-economic variables which determine the value towards forest ecosystem services. The results indicate that forest dwellers have a positive option value and hence are willing to forgo present extraction of forest resources for future use. This value the forest dwellers associate with non-use ecosystem services indicates their willingness to participate in forest conservation. The study therefore concludes that institutions like Joint Forest Management should be promoted for efficient management of the mangrove in providing livelihood and ecosystem services.
In recent decades, streamflow data remain inaccessible for most river gauges in Ethiopia due to a lack of updated stage–discharge relationships, also called rating curves. In this study, researchers and hydrologic technicians collaborated to fill the recent streamflow data gaps at three gauging stations in the Lake Tana sub-basin of the Nile River. We conducted extensive field campaigns to improve the coverage of stage–discharge measurements for rating curve development. We evaluated the rating curve uncertainty during the time of its establishment and the sensitivity of the rating curves to sample size. The stage–discharge measurements conducted by the hydrological agency during the period 2016–2020 were found inadequate in number and coverage to establish reliable rating curves. Hence, converting recent water level measurements to discharge data was made possible using the rating curves developed in this study. The converted discharge data will be accessible to researchers to investigate the sub-basin’s hydrology. Our study emphasizes the need to improve the stage–discharge measurement frequency to keep up with the frequent change in the morphology of the rivers’ channels. The study demonstrated that collaboration between the data provider and data users can improve streamflow data availability and accessibility, which has become an increasing global challenge.
Collaboration / Hydrology / Catchment areas / Lakes / Rivers / Tributaries / Monitoring / Water levels / Discharges / Stream flow Record No:H051823
The recent Russia–Ukraine conflict has raised significant concerns about global food security, leaving many countries with restricted access to imported staple food crops, particularly wheat and sunflower oil, sending food prices soaring with other adverse consequences in the food supply chain. This detrimental effect is particularly prominent for low-income countries relying on grain imports, with record-high food prices and inflation affecting their livelihoods. This review discusses the role of Russia and Ukraine in the global food system and the impact of the Russia–Ukraine conflict on food security. It also highlights how diversifying four areas of agrifood systems—markets, production, crops, and technology can contribute to achieving food supply chain resilience for future food security and sustainability.
Rangelands in arid and semi-arid regions serve as grazing land for domesticated animals and therefore offer livelihood opportunities for most pastoral communities. Thus, the exposure of most rangelands in arid and semi-arid regions to threats that are associated with natural, social, economic, and political processes affects their capacity to provide socioeconomic and environmental support to the immediate and global communities. In spite of the effects of rangeland transformations on both the natural and human environment, the assessment of threats affecting rangeland productivity has often been approached from a conventional scientific perspective. Most existing literature is focused on the assessment of threats to the biophysical environment. As such the social dimension of rangeland threats is not well understood. This research employed participatory rural appraisal (PRA) and PGIS techniques to assess rangeland threats and management actions from a local perspective. The result revealed that local actors prioritize threats to their social and economic needs over threats to the biophysical environment and their preference is informed by the frequency and magnitude of the threats. The outcome of the research demonstrates the need to promote rangeland governance through interdisciplinary and inclusive participation in research and development.
Assessment / Inclusion / Livelihoods / Communities / Pastoralists / Socioeconomic aspects / Ecological factors / Land productivity / Grazing lands / Techniques / Mapping / Land governance / Geographical information systems / Participatory rural appraisal / Local knowledge / Common lands / Rangelands / Sustainable land management Record No:H051819
Maize (Zea Mays) is one of the most valuable food crops in sub-Saharan Africa and is a critical component of local, national and regional economies. Whereas over 50% of maize production in the region is produced by smallholder farmers, spatially explicit information on smallholder farm maize production, which is necessary for optimizing productivity, remains scarce due to a lack of appropriate technologies. Maize leaf area index (LAI) is closely related to and influences its canopy physiological processes, which closely relate to its productivity. Hence, understanding maize LAI is critical in assessing maize crop productivity. Unmanned Aerial Vehicle (UAV) imagery in concert with vegetation indices (VIs) obtained at high spatial resolution provides appropriate technologies for determining maize LAI at a farm scale. Five DJI Matrice 300 UAV images were acquired during the maize growing season, and 57 vegetation indices (VIs) were generated from the derived images. Maize LAI samples were collected across the growing season, a Random Forest (RF) regression ensemble based on UAV spectral data and the collected maize LAI samples was used to estimate maize LAI. The results showed that the optimal stage for estimating maize LAI using UAV-derived VIs in concert with the RF ensemble was during the vegetative stage (V8–V10) with an RMSE of 0.15 and an R2 of 0.91 (RRMSE = 8%). The findings also showed that UAV-derived traditional, red edge-based and new VIs could reliably predict maize LAI across the growing season with an R2 of 0.89–0.93, an RMSE of 0.15–0.65 m2/m2 and an RRMSE of 8.13–19.61%. The blue, red edge and NIR sections of the electromagnetic spectrum were critical in predicting maize LAI. Furthermore, combining traditional, red edge-based and new VIs was useful in attaining high LAI estimation accuracies. These results are a step towards achieving robust, efficient and spatially explicit monitoring frameworks for sub-Saharan African smallholder farm productivity.
One of the most significant issues faced by many low- and middle-income nations, including South Africa, is ensuring access to healthy, affordable, and sustainable food. South Africa is renowned worldwide for its rich biodiversity and a vast body of traditional knowledge among those who consume forest foods. However, despite ecological diversity, frequent barriers remain to getting diversified household diets. This study sought to investigate the contribution of trees and green spaces to household food security in eThekwini. A total of 280 households met the inclusion criteria and consented to participate in this study by responding to questionnaires. The collected data were analysed using descriptive statistics, the computation of the Household Food Insecurity Access Scale (HFIAS), and the Instrumental Variable Poisson model. The study’s results revealed that only 29% of the respondents were food secure, 36% were mildly food insecure, 27% were moderately food insecure, and 8% were severely food insecure. The Instrumental Variable Poisson model results revealed that cultivated green spaces, wealth index, gender, education level of the head of households, and grants had a negative correlation with household food insecurity. On the other hand, non-cultivated green spaces, local trees, age, marital status, number of dependents, and monthly income positively correlated with food insecurity. Given the existence of trees and green spaces in eThekwini, there is potential for food security solutions to be formed around both cultivated and uncultivated green spaces to promote sustainable access to food and nutritious diets in low-income households. Policy interventions should adopt an approach that encourages the incorporation of foods from both cultivated and uncultivated trees and green spaces in people’s diets.
Socioeconomic aspects / Poverty / Income / Communities / Food access / Sustainability / Nutrition security / Food insecurity / Trees / Greenspace / Household food security Record No:H051817
Nayak, H. S.; Parihar, C. M.; Aravindakshan, S.; Silva, J. V.; Krupnik, T. J.; McDonald, A. J.; Kakraliya, S. K.; Sena, Dipaka R.; Kumar, V.; Sherpa, S.; Bijarniya, D.; Singh, L. K.; Kumar, M.; Choudhary, K. M.; Kumar, S.; Kumar, Y.; Jat, H. S.; Sidhu, H. S.; Jat, M. L.; Sapkota, T. B. 2023. Pathways and determinants of sustainable energy use for rice farms in India.Energy, 41p. (Online first) [DOI] More... | Fulltext (1.70 MB)
Rice cultivation in the Western Indo-Gangetic plains of India is often blamed for higher energy use. Thus, a bootstrapped meta-frontier approach with a truncated regression approach was used on a database of 3832 rice farms from the input-intensive rice production tracts of western Indo-Gangetic Plains for sustainable energy-use assessment. Farms were classified based on efficiency scores to screen the inefficient practices and farms in Indo-Gangetic Plains. The district-specific technical-efficiency scores ranged between 0.68 and 0.99, with a mean of 0.86–0.90, suggesting average improvement in energy-use efficiency by 10–14% within the district. The mean meta-frontier technical-efficiency score ranged between 0.60 and 0.81. On average, the energy-use-efficient farms had 42% or higher energy-use efficiency in the districts of Ambala, Fatehgarh Sahib, and Karnal. In contrast, in other districts, the efficient farms had 5-19% higher energy-use efficiency. There is evidence of a higher number of tillage, irrigation, and fertilizer application among the inefficient farmers, specific to some districts. The efficient as well as inefficient farmers in Kapurthala and Ludhiana spend similar energy in tillage, whereas, the energy output from both efficient and inefficient farms are similar in Kurukshetra. Thus, there is a need of differential attention specific to district and practices. The evidence provided in this study can help to identify pathways toward sustainable energy use for future rice production in other ecologies too. Similar type of analysis can be carried out for other parameters like profitability and carbon footprint to explore where farmers are spending extra monetary and carbon inputs, and not getting additional yield benefits.
Farmers / Tillage / Irrigation / Agrochemicals / Fertilizers / Data envelopment analysis / Policies / Agricultural production / Farms / Rice / Use efficiency / Sustainable use / Energy consumption Record No:H051816
This study developed the SEWAGE-TRACK model for disaggregating lumped national wastewater generation estimates using population datasets and quantifying rural and urban wastewater generation and fate. The model allocates wastewater into riparian, coastal, and inland components and summarizes the fate of wastewater into productive (direct and indirect reuse) and unproductive components for 19 countries in the Middle East and North Africa (MENA) region. As per the national estimates, 18.4 km3 of municipal wastewater generated in 2015, was disaggregated over the MENA region. Results from this study revealed urban and rural areas to contribute to 79 % and 21 % of municipal wastewater generation respectively. Within the rural context, inland areas generated 61 % of the total wastewater. The riparian and coastal regions produced 27 % and 12 %, respectively. Within the urban settings, riparian areas produced 48 %, while inland and coastal regions generated 34 % and 18 % of the total wastewater, respectively. Results indicate that 46 % of the wastewater is productively used (direct reuse and indirect use), while 54 % is lost unproductively. Of the total wastewater generated, the most direct use was observed in the coastal areas (7 %), the most indirect reuse in the riparian regions (31 %), and the most unproductive losses in inland areas (27 %). The potential of unproductive wastewater as a non-conventional freshwater source was also analyzed. Our results indicate that wastewater is an excellent alternative water source and has high potential to reduce pressure on non-renewable sources for some countries in the MENA region. The motivation of this study is to disaggregate wastewater generation and track wastewater fate using a simple but robust approach that is portable, scalable and repeatable. Similar analysis can be done for other regions to produce information on disaggregated wastewater and its fate. Such information is highly critical for efficient wastewater resource management.
Coastal areas / Groundwater recharge / Water availability / Water reuse / Models / Estimation / Water productivity / Datasets / Population / Rural areas / Municipal wastewater / Wastewater treatment Record No:H051814
The agricultural sector is faced with numerous challenges including climate change and water scarcity in many developing countries. In order to address scarcity and improve water use efficiency for rural farmers, fish farming is being integrated with small-scale irrigation. However, there are challenges in how to allocate water between the two farming enterprises. This study explored the capabilities of system dynamics to allocate water between a fish pond and a crop field in Chingale, Malawi using a system dynamic software, Vensim PLE. For soil water and pond water, a simple water balance structure was built and connected to the crop growth structure. Simulations run for 125 days corresponding to the maize growth period. Model results are similar to the actual yield (about 3.5 ton/ha for hybrid) and biomass production (about 7 ton/ha) in the area. Results also show it was possible to maintain pond water depth at recommended depths for raising fish: fish stocking (1 m), operation of the pond (1.5–2.0 m) and harvesting of the fish (less than 1.2 m) throughout the maize growing period. While the study did not comprehensively build and simulate fish growth, the use of such simple tools would benefit rural farmers with few resources. Based on the promising capabilities and the results of the tool it is recommended that further comprehensive analysis to fully incorporate all key sub-components affecting crop and fish growth be carried out.
Climate change / Farmers / Rural areas / Rainfall / Water resources / Crop yield / Biomass production / Water-use efficiency / Water depth / Soil water balance / Crop production / Maize / Fish ponds / Decision support systems / Small-scale irrigation / Aquaculture / Modelling / Water allocation Record No:H051813
To avoid wetland degradation and promote sustainable wetlands use, decision-makers and managing institutions need quantified and spatially explicit information on wetland ecosystem condition for policy development and wetland management. Remote sensing holds a significant potential for wetland mapping, inventorying, and monitoring. The Wetland Use Intensity (WUI) indicator, which is not specific to a particular crop and which requires little ancillary data, is based on the Mean Absolute Spectral Dynamics (MASD), which is a cumulative measure of reflectance change across a time series of optical satellite images. It is sensitive to the compound effects of land cover changes caused by different agricultural practices, flooding or burning. The more frequent and intrusive management practices are on the land cover, the stronger the WUI signal. WUI thus serves as a surrogate indicator to measure pressure on wetland ecosystems.
We developed a new and automated approach for WUI calculation that is implemented in the Google Earth Engine (GEE) cloud computing environment. Its automatic calculation, use of regular Sentinel-2 derived time series, and automatic cloud and cloud shadow masking renders WUI applicable for wetland management and produces high quality results with minimal user requirements, even under cloudy conditions. For the first time, we quantitatively tested the capacity of WUI to contribute to wetland health assessment in Rwanda on the national and local scale. On the national scale, we analyzed the discriminative power of WUI between different wetland management categories. On the local scale, we evaluated the possible contribution of WUI to a wetland ecosystem health scoring system. The results suggest that the adapted WUI indicator is informative, does not overlap with existing indicators, and is applicable for wetland management. The possibility to measure use intensity reliably and consistently over time with satellite data is useful to stakeholders in wetland management and wetland health monitoring, and can complement established field-based wetland health assessment frameworks.
Satellite imagery / Gomorphology / Vegetation / Water quality / Surface water / Land use / Datasets / Earth observation satellites / Indicators / Remote sensing / Assessment / Environmental health / Ecosystems / Wetlands Record No:H051812
The United Nation 2023 Water Conference offers a critical opportunity to catalyse actions and innovations that bring increased water security to vulnerable communities across the globe. Researchers have an important role in supporting the delivery of needed on-the-ground impact, but their work must be informed by the priorities and necessities of Global South implementors.
Youth / Technology / Strategies / Climate change / Sustainable Development Goals / Water demand / Multi-stakeholder processes / Water governance / Policies / Innovation / Research / Water systems / Transformation / Water security Record No:H051811
Study region: Lake Tana sub-basin of the Upper Blue Nile River Basin, Ethiopia.
Study focus: Groundwater use for small-scale irrigation is increasing in the Lake Tana sub-basin. However, the abstraction amount and its impact are not well understood. In this study, a new methodological approach was utilized to estimate the irrigation water abstraction amount, which is based on groundwater level monitoring before, during, and at the end of the irrigation season (2021/2022). The monitoring was conducted on 361 hand-dug wells distributed throughout the sub-basin, which is subdivided into East, Southwest, and North zones.
New hydrological insights for the region: Groundwater abstraction for irrigation and associated groundwater level decline estimates are 10.6 × 106 m3 and 2.43 m in the East, 4.2 × 106 m3 and 3.23 m in the Southwest, and 0.6 × 106 m3 and 1.32 m in the North. These abstractions account for 103%, 97%, and 62% of the mean annual groundwater recharge in the East, Southwest, and North zones, respectively. Groundwater is overexploited in the East and Southwest zones although, at the sub-basin scale, the amount of groundwater used for irrigation is small compared to the renewable groundwater resource. However, if groundwater-based irrigation continues to expand especially in the East and Southwest zones, groundwater scarcity at the local scales will worsen. Adaptive management strategies are required to minimize the potential adverse effects on groundwater resources.
Dry season / Wells / Lakes / Sediment / Aquifers / Irrigated land / Water supply / Surface water / Water use / Small-scale irrigation / Water levels / Monitoring / Groundwater table / Groundwater recharge / Water availability / Shallow water / Groundwater irrigation / Groundwater extraction Record No:H051807
Climate extreme events have been observed more frequently since the 1970s throughout Ethiopia, which adversely affects the socio-economic development of the country, as its economy depends on agriculture, which, in turn, relies heavily on annual and seasonal rainfall. Climate extremes studies conducted in Ethiopia are mainly limited to a specific location or watershed, making it difficult to have insights at the national level. The present study thus aims to examine the observed climate extreme events in Ethiopia at both station and agro-ecological zone (AEZ) levels. Daily rainfall and temperature data for 47 and 37 stations, respectively (1986 up to 2020), were obtained from the National Meteorology Agency (NMA). The Modified Mann–Kendall (MMK) trend test and the Theil–Sen slope estimator were employed to estimate the trends in rainfall and temperature extremes. This study examines trends of 13 temperature and 10 rainfall extreme indices using RClimDex in R software. The results revealed that most of the extreme rainfall indices showed a positive trend in the majority of the climate stations. For example, an increase in consecutive dry days (CDD), very heavy rainfall days (R20), number of heavy rainfall days (R10) and consecutive wet days (CWD) were exhibited in most climate stations. In relation to AEZs, the greater number of extreme rainfall indices illustrated an upward trend in cool and sub-humid, cool and humid, and cool and moist AEZs, a declining trend in hot arid AEZ, and equal proportions of increasing and decreasing trends in warm semi-arid AEZs. Concerning extreme temperature indices, the result indicated an increasing trend of warm temperature extreme indices and a downward trend of cold temperature extreme indices in most of the climate stations, indicating the overall warming and dryness trends in the country. With reference to AEZs, an overall warming was exhibited in all AEZs, except in the hot arid AEZ. The observed trends in the rainfall and temperature extremes will have tremendous direct and indirect impacts on agriculture, water resources, health, and other sectors in the country. Therefore, the findings suggest the need for identifying and developing climate change adaptation strategies to minimize the ill effects of these extreme climate events on the social, economic, and developmental sectors.
Time series analysis / Spatial distribution / Precipitation / Climate change adaptation / Agroecological zones / Meteorological stations / Trends / Temperature / Rainfall / Extreme weather events Record No:H051768
Introduction: In rainfed agricultural systems, sustainable and efficient water management practices are key to improved agricultural productivity and natural resource management. The agricultural system in sub-Saharan Africa (SSA) relies heavily on the availability of rainfall. With the erratic and unreliable rainfall pattern associated with poor and fragile soils, agricultural productivity has remained very low over the years. Much of the SSA agricultural land has been degraded with low fertility as a result of ongoing cultivation and wind and water erosion. This has resulted in an increased food shortage due to the ever-increasing population and land degradation. Better agricultural and nutritional security are further hampered by the lack of reliable access to the available water resources in the subsurface hydrological system.
Methods: This study used socio-economic data from 112 farm households and Boolean and Fuzzy methods to understand farmersapos; perceptions and identify suitable areas to implement Solar Based Irrigation Systems (SBISs) in the agro-ecologies of Bougouni and Koutiala districts of southern Mali.
Results and discussion: Results revealed that the usage of SBISs has been recent (4.5 years), majorly (77%) constructed by donor-funded projects mainly for domestic water use and livestock (88%). With regards to irrigation, vegetable production was the dominant water use (60%) enabling rural farm households to gain over 40% of extra household income during the dry season. Results further showed that 4,274 km2 (22%) of the total land area for the Bougouni district, and 1,722 km2 (18%) of the Koutiala district are suitable for solar-based irrigation. The affordability of solar panels in many places makes SBISs to be an emerging climate-smart technology for most rural Malian populations.
Case studies / Socioeconomic aspects / Households / Rural areas / Rainfall / Solar energy / Groundwater / Water use / Water management / Sustainable intensification / Soil types / Slope / Land cover / Land use / Land suitability / Farmers / Smallholders / Technology / Climate-smart agriculture / Agricultural practices / Solar powered irrigation systems Record No:H051767
In this study, we conducted a scoping review and bibliometric analysis to evaluate the state-of-the-art regarding actual applications of unmanned aerial vehicle (UAV) technologies to guide precision agriculture (PA) practices within smallholder farms. UAVs have emerged as one of the most promising tools to monitor crops and guide PA practices to improve agricultural productivity and promote the sustainable and optimal use of critical resources. However, there is a need to understand how and for what purposes these technologies are being applied within smallholder farms. Using Biblioshiny and VOSviewer, 23 peer-reviewed articles from Scopus and Web of Science were analyzed to acquire a greater perspective on this emerging topical research focus area. The results of these investigations revealed that UAVs have largely been used for monitoring crop growth and development, guiding fertilizer management, and crop mapping but also have the potential to facilitate other PA practices. Several factors may moderate the potential of these technologies. However, due to continuous technological advancements and reductions in ownership and operational costs, there remains much cause for optimism regarding future applications of UAVs and associated technologies to inform policy, planning, and operational decision-making.
A study was conducted to determine the combined effects of three tillage practices and four maize (Zea mays L.)- based cropping systems on physical, saturated, and near-saturated hydraulic properties in a sandy loam soil of North-Western India. Split-plot experimental design was adopted with tillage [conventional tillage (CT), zero tillage (ZT), and permanent raised bed (PB)] as the main plot treatments and intensified crop rotations [Maize (Zea mays L.)-Wheat (Triticum aestivum)-Greengram (Vigna radiata L.) (MWGg), Maize-Chickpea (Cicer arietinum L.)-Sesbania (Sesbania aculeata) (MCpSb), Maize-Mustard (Brassica juncea) -Greengram (MMuGg) and MaizeMaize-Sesbania (MMSb)] as subplot treatments. The saturated and near-saturated soil hydraulic conductivity were derived from steady-state infiltration rates measured using a hood infiltrometer on the surface soil at 0, - 1, and - 3 cm pressure heads. The long-term (10 years) study revealed that the bulk density (BD) of the soil under conservation agriculture (CA) practices (PB and ZT) was significantly (P = 0.05) lower than that in CT practices. The soil BD in the MCpSb cropping system was measured to be the lowest (1.24 g cm- 3 ) among all the cropping systems. The soil aggregate mean weight diameter (MWD) under PB and ZT was determined to be 31% and 27% higher than in the CT treatments. In tillage × cropping systems interactions, the highest MWD was observed in the PB×MWGg. The saturated and near-saturated hydraulic conductivity (K(h)) were estimated to have higher values in CA practices (PB and ZT) than in the CT treatments. In the case of cropping systems, the soil’s mean field saturated hydraulic conductivity was estimated to be significantly (P lt; 0.05) higher under the MWGg, MCpSb, and MMuGg than the MMSb. The present study indicates that conservation agriculture-based crop management with diversified maize-based rotation (MCpSb, MWGg, and MMuGg) could be promising alternatives to conventional tillage practices (CT). Among the cropping system choices, MWGg was more effective in improving the soil’s hydro-physical properties in the study area.
Societal Impact Statement:
Understanding the perceptions of benefits and threats from trees is important for the livelihoods of communities. The study used focus group discussions, key informant interviews, and a questionnaire survey of 226 households in the province of KwaZulu-Natal, South Africa. The findings showed that household socio-economic factors such as gender and land tenure influenced perceptions of tree growing, and households that were involved in a tree restoration project viewed trees as contributing toward their livelihoods by reducing hunger. Hence there is a need to design strategies that promote socio-economic inclusivity of all households and genders and promote programs that increase awareness of ecosystem services within communities.
Summary:
Understanding the socio-economic factors that shape the way households value and utilize natural resources is critical in developing nature-based solutions. The study was aimed at understanding how the socio-economic circumstances of households determined their perceptions of the role of trees in livelihood delivery.
A case study of Buffelsdraai and Osindisweni communities was used; these sites are adjacent to a municipal landfill where a tree restoration project intended to mitigate the effects of climate change is being implemented, and some of the households are involved in this project. The study used focus group discussions, key informant interviews, and a questionnaire survey of 226 households. It explored gender perspectives on the perceived benefits and threats of tree restoration. It analyzed the influence of householdsapos; economic characteristics and spatial configuration (the subdivisions of the landscape) to assess the impact of land tenure.
The findings showed that gender influenced the perceptions that economic benefits can be derived from participating in the project. Households involved in the tree restoration project viewed trees as contributing to their livelihoods by reducing hunger. Households in peri-urban settlements, permanently resident in the area, showed greater reliance on natural resources than those in informal settlements and rural areas. Such differences can be attributed to differences in land tenure.
Hence, there is a need to design strategies and operations that promote socio-economic inclusivity of all households and genders and reduce inequality. These findings are important for informing scaling to yield better climate change considerations and policies.
Poverty / Landfills / Land tenure / Climate change / Sustainable Development Goals / Nature conservation / Natural resources / Women / Gender / Socioeconomic aspects / Livelihoods / Community development / Restoration / Trees Record No:H051759
Climate change is affecting the agriculture, water, and energy sectors in East Africa and the impact is projected to increase in the future. To allow adaptation and mitigation of the impacts, we assessed the changes in climate and their impacts on hydrology and hydrological extremes in East Africa. We used outputs from seven CMIP-6 Global Climate Models (GCMs) and 1981–2010 is used as a reference period. The output from GCMs are statistically downscaled using the Bias Correction-Constructed Analogs with Quantile mapping reordering method to drive a high-resolution hydrological model. The Variable Infiltration Capacity and vector-based routing models are used to simulate runoff and streamflow across 68,300 river reaches in East Africa. The results show an increase in annual precipitation (up to 35%) in Ethiopia, Uganda, and Kenya and a decrease (up to 4.5%) in Southern Tanzania in the 2050s (2041–2070) and 2080s (2071–2100). During the long rainy season (March–May), precipitation is projected to be higher (up to 43%) than the reference period in Southern Ethiopia, Kenya, and Uganda but lower (up to -20%) in Tanzania. Large parts of Kenya, Uganda, Tanzania, and Southern Ethiopia show an increase in precipitation (up to 38%) during the short rainy season (October–December). Temperature and evapotranspiration will continue to increase in the future. Further, annual and seasonal streamflow and hydrological extremes (droughts and floods) are projected to increase in large parts of the region throughout the 21st century calling for site-specific adaptation.
Migration impacts left-behind populations, disrupting established norms of social interaction, participation, and inclusion. In western Nepal, labour migration is common among young men, with implications for household and community participation among those left behind, who are predominately women. In this study, we use mixed methods to examine how labour migration impacts the social inclusion of migrant households, especially, of left-behind women in community groups and activities. For our analysis, we use quantitative survey data from over 3600 households in the Karnali and Mahakali River Basins of western Nepal and qualitative data from 16 focus group discussions and 37 in-depth interviews held in the same region. Our analysis reveals substantial heterogeneity in the experiences of women and households left behind by migrants. Women’s opportunities to participate in economic systems such as natural resource user committees and non-governmental organisation trainings are moderated by intersecting identities including gender, caste/ethnicity, kinship, age, and economic status. Young women from nuclear, low caste, and poor households with limited social ties suffer from disadvantaged positions and face restricted access to spaces of participation. Accordingly, left-behind women’s opportunities to benefit from community resources remain dependent on their caste and kinship networks. These findings contribute to ongoing debates on the impacts of migration, and can help inform improved targeting of interventions to advance gender equity in rural Nepal.
Households / Labour / Collective action / s participation / Womenapos / Intersectionality / Social aspects / Natural resources management / Gender / Migration Record No:H051757
Customary water tenure in low-and middle-income rural areas has received limited academic, policy, and legal attention as yet. This paper seeks to conceptualize and analyse gender-differentiated living customary water tenure, focusing on sub-Saharan Africa. Extensive literature review suggests four gendered domains: first, water needs and uses; second, strategies to meet those needs by directly accessing water sources, and, with increasing wealth by investing individually or collectively in water infrastructure for self-supply, creating infrastructure-related ‘commons’ in the case of collective systems; third, at community scale, the ‘sharing in’ of communities’ naturally available water resources that flow into infrastructure; and, fourth, ‘sharing out’ of those resources with neighbouring communities but also powerful third parties of foreign and national high impact users. Rendering the gendered community more visible as the main agent to manage its water resources as the commons provides evidence for a range of policies, laws and interventions, including gender equitable and community-led water infrastructure development integrating domestic and productive spheres; strengthening customary arrangements to share water resources as a commons within a community or with neighbouring communities, and the long overdue formal protection of customary water tenure against ‘water grabs’ by powerful third parties.
Commons / Water sharing / Infrastructure / Water resources / Legal pluralism / Men / Women / Gender analysis / Customary tenure / Water tenure Record No:H051756
Failure in Environmental flow in quantity, timing, and quality leads to failure to support ecosystems, human livelihoods, and well-being. Irrigation water use is one of the main actors in impacting the water flow of rivers in quantity and time but was not well investigated in many ungauged catchments under smallholder irrigation systems. This study examined the impact of irrigation water use on environmental flow in Arataapos;s small ungauged catchment. The study estimated the flow in sub-catchment using the area ratio method, the crop irrigation water requirement using F.A.O. cropwat 8.0, and the water balance in the Water Evaluation and Planning System tool and the environmental flow in Tennants, Q95, asnd local area thumb rule. The result showed that the minimum environmental flow of the Arata catchment is 290, 310, and 60 li/sec in the Tennant, Q95, and the local thumb rule. Irrigation consumes only 9% of the water resources of the catchment while 91% is contributed to downstream lake Ziway via Ketar river. January and February have unmet water demand and zero environmental flow. In December Tennantapos;s 10% and Q95 recommended environmental flow had 19% and 24% deficit while the thumb rule environmental flow is 291% more than the minimum requirement. The rest of the months are by far more than the minimum environmental flow requirement. Given the result, meeting the environmental flow of the system throughout the year needs the installation of a water storage facility from upstream to downstream, the introduction of different water-saving irrigation technologies, farmersapos; capacity building in irrigation water management, and a standardized environmental flow estimation mechanism.
Livestock / Water requirements / Crops / Water balance / Water demand / Catchment areas / Rivers / Environmental flows / Water use / Small-scale irrigation Record No:H051755
Lynch, A. J.; Cooke, S. J.; Arthington, A. H.; Baigun, C.; Bossenbroek, L.; Dickens, Chris; Harrison, I.; Kimirei, I.; Langhans, S. D.; Murchie, K. J.; Olden, J. D.; Ormerod, S. J.; Owuor, M.; Raghavan, R.; Samways, M. J.; Schinegger, R.; Sharma, S.; Tachamo-Shah, R.-D.; Tickner, D.; Tweddle, D.; Young, N.; Jahnig, S. C. 2023. People need freshwater biodiversity.WIREs Water, e1633. (Online first) [DOI] More... | Fulltext (16.6 MB)
Freshwater biodiversity, from fish to frogs and microbes to macrophytes, provides a vast array of services to people. Mounting concerns focus on the accelerating pace of biodiversity loss and declining ecological function within freshwater ecosystems that continue to threaten these natural benefits. Here, we catalog nine fundamental ecosystem services that the biotic components of indigenous freshwater biodiversity provide to people, organized into three categories: material (food; health and genetic resources; material goods), nonmaterial (culture; education and science; recreation), and regulating (catchment integrity; climate regulation; water purification and nutrient cycling). If freshwater biodiversity is protected, conserved, and restored in an integrated manner, as well as more broadly appreciated by humanity, it will continue to contribute to human well-being and our sustainable future via this wide range of services and associated nature-based solutions to our sustainable future.
Catchment areas / Nutrient cycles / Water purification / Recreation / Cultural factors / Climate change / Genetic resources / Education / Health / Fisheries / Nature-based solutions / Ecosystem services / Biodiversity conservation / Freshwater ecosystems Record No:H051734
Study region: The Buffalo River (BR) catchment, KwaZulu-Natal, South Africa.
Study focus: Due to the vast majority of the BR catchment’s water demands not being fully satisfied in recent years, studies investigating potential climate change impacts on the catchment’s water supply availability are needed. The study’s objective was to therefore assess climate change-induced surface water availability (SWA) variations in the BR catchment from 2020 to 2100. To achieve this, the hydrologic Water Evaluation and Planning model was forced with the catchment’s physical and hydrological data, and projected climate data from an ensemble of GCMs under RCP4.5 and RCP8.5 scenarios from CMIP5.
New hydrological insights for the region: The study findings projected increased precipitation, especially in the far future (2070–2100) whereby mean annual precipitation increased by 5 % to 8286 Mm3 /annum under the worst-case climate change scenario (RCP8.5). With evapotranspiration and water abstractions averaging 4500 Mm3 /annum and 115 Mm3 /annum, respectively, surface runoff and SWA increased by 8 % and 10 %, yielding averages of 3265 Mm3 /annum and 287 Mm3 /annum, respectively. Even with the increased SWA, unmet demands also increased by 113 % towards the end of the 21st century. As the study established that climate change might exacerbate the BR catchment’s water supply system’s insufficiency to meet growing demands, such findings present an opportunity for the integrated Water-Energy-Food nexus approach to be further utilised for formulating sustainable water management strategies.
Models / Case studies / Forecasting / Precipitation / Stream flow / Runoff / Water extraction / Nexus approaches / Food production / Energy / Water supply / Water demand / Catchment areas / Rivers / Sustainability / Water balance / Hydrological modelling / Water availability / Surface water / Climate change Record No:H051686
The paper proposes a probabilistic approach to the assessment of the impacts of multipurpose dams. It is framed around the notion of Nature’s Contributions to People (NCP) in the setting of the Water-Energy-Food nexus. The socio-ecological context of the Tana River Basin in Kenya and the construction of two multipurpose dams are used to highlight co-produced positive and negative NCP under alternative river regimes. These regimes produce both damaging floods that ought to be controlled and beneficial floods that ought to be allowed. But the river regime that results from hydropower generation and flood risk reduction may not be the one that is most conducive to food and feed-based NCP. The approach relates the economic value of river-based NCP coproduction to the probability of flooding to derive the expected annual value of NCP and a NCP value-probability curve. The relation between NCP flows and flood characteristics is tested and estimated based on regression analyses with historical data. Results indicate that the net economic value of key NCP associated with multipurpose dams for local people and associated social equity effects largely depend on the frequency of flood events and on the way impacts are distributed across communities, economic sectors and time.
Communities / Ecological factors / Social aspects / Hydroelectric power generation / Hydrology / Floods / Economic value / River basins / Equity / Ecosystem services / Natural environment / Nexus approaches / Food systems / Energy / Water resources / Reservoirs / Dams Record No:H051684
Introduction: Intercropping cereals with legumes can intensify rainfed cereal monocropping for improved household food and nutritional security. However, there is scant literature confirming the associated nutritional benefits.
Methodology: A systematic review and meta-analysis of nutritional water productivity (NWP) and nutrient contribution (NC) of selected cereal-legume intercrop systems was conducted through literature searches in Scopus, Web of Science and ScienceDirect databases. After the assessment, only nine articles written in English that were field experiments comprising grain cereal and legume intercrop systems were retained. Using the R statistical software (version 3.6.0), paired t-tests were used to determine if differences existed between the intercrop system and the corresponding cereal monocrop for yield (Y), water productivity (WP), NC, and NWP.
Results: The intercropped cereal or legume yield was 10 to 35% lower than that for the corresponding monocrop system. In most instances, intercropping cereals with legumes improved NY, NWP, and NC due to their added nutrients. Substantial improvements were observed for calcium (Ca), where NY, NWP, and NC improved by 658, 82, and 256%, respectively.
Discussion: Results showed that cereal-legume intercrop systems could improve nutrient yield in water-limited environments. Promoting cereal legume intercrops that feature nutrient-dense legume component crops could contribute toward addressing the SDGs of Zero Hunger (SDG 3), Good Health and Well-3 (SDG 2) and Responsible consumption and production (SDG 12).
Goal 12 Responsible production and consumption / Goal 3 Good health and well-being / Goal 2 Zero hunger / Sustainable Development Goals / Nutrition / Water productivity / Water use efficiency / Multiple cropping / Legumes / Cereal crops / Intercropping Record No:H051672
What happens to local institutional arrangements regarding access and use of communal land under the forces of agricultural commercialization? Taking Khwaykham village in Phongsaly province, Laos as a case study, this paper sheds light on this question as farm households in the settlement have progressively transitioned to commercial farming, specifically tea cultivation. Traditionally, farm households’ access and rights to use the land were embedded in their swidden agriculture practices. The adoption of tea has increasingly fixed land use rights, making land sticky at the household rather than communal level. How, why and with what effects this occurs are the focus of the paper. We argue that while this transition to tea cultivation has benefited – in income terms – most farm households in the village, it has also created an agrarian context for increased inequity between those households who rapidly took the opportunity from the tea boom and others who have missed out on it.
Case studies / Villages / Strategies / Households / Institutions / Agrarian reform / Farmers / Equity / Land use / Shifting cultivation / Tea industry / Land rights / Land access / Commercialization / Customary tenure / Land tenure systems Record No:H051670
Effects of exclosures on restoring degraded lands may vary with soil type, exclosure age, and conditions before the establishment of exclosures. Yet, studies investigating the effectiveness of exclosures in restoring degraded lands under different environmental conditions are lacking. This study aims at investigating the changes in woody species richness and diversity, and ecosystem carbon stocks after implementing exclosures in the Central Rift Valley, Ethiopia. Vegetation and soil data were gathered from 120 nested plots established in exclosures of eight and 30-years-old and adjacent grazing lands. Results showed that exclosures contained a higher number of economically important woody species compared to their respective adjacent grazing lands. However, the exclosures and respective adjacent grazing lands did not differ significantly in the diversity of tree and shrub species, and both the exclosures and adjacent grazing lands were dominated by few tree and shrub species. The older exclosure (30 years old) displayed significantly (p lt; 0.01) higher soil organic carbon and soil total nitrogen content and stocks than the adjacent grazing land, whereas the youngest exclosure (8 years old) did not show a significant difference in these variables. The results suggest that a longer time (e.g., =10 years) is needed to detect significant differences in soil organic carbon and total soil nitrogen. However, exclosures could bring considerable changes in woody species density in a relatively shorter period (e.g., =10 years) and support to restore degraded native woody species.
Labor migration is a complex phenomenon, yet while much attention has been paid to understanding the drivers of migration, there is a huge knowledge and policy gap regarding the effects of migration on people and communities left behind. We sought to explore the impacts of rural outmigration on migrant-sending communities in Ethiopia. This remains an understudied topic when it comes to research on migration in Ethiopia. Our investigation is based on a critical review of the migration literature pertaining to Ethiopia and, more broadly. We pursued a holistic analysis of the multidimensional aspects of migration. There are indications that rural outmigration impacts involve issues related to remittances, household food security, agricultural labor use, farmland management, and rural infrastructure development. Our analysis revealed that there had been few systematic studies and limited analyses regarding the impacts of outmigration on agriculture and the livelihoods of rural people and households left behind. Instead, Ethiopia’s migration literature largely deals with migration’s causes, including environmental factors, climate variability, agricultural pressures, livelihood stresses, and changing aspirations.
Investment / Remittances / Women / Social networks / Climate variability / Environmental factors / Livelihoods / Land management / Farmland / Household food security / Communities / Agriculture / Labour / Rural areas / Migration Record No:H051664
Study region: River basins with glacier ratios ranging from 1.8% to 20.7% in the monsoon-influenced southern Tibetan Plateau.
Study focus: The response of runoff processes in basins with different glacier ratios under global warming of 1.5 C and 2 C was explored based on SPHY (Spatial Processes in Hydrology) model and GCMs (General Circulation Models).
New hydrological insights for the region: More prominent temperature and precipitation changes were observed in the monsoon-influenced southern Tibetan Plateau compared with the global averages. With increasing temperature and precipitation, the total runoff and glacier runoff of these basins showed increasing trends under global warming of 1.5 C and 2 C. Compared with the baseline period (1985–2014), increases were observed in the total runoff (1.7–20.6%), base flow (2.8–8.3%), glacier runoff (8.1–35.9%), and rainfall runoff (6.0–36.0%) of these basins. In contrast, snowmelt runoff decreased (- 28.3% - - 4.3%). Therefore, relevant management and allocation of water resources may be required. The hydrological regulation function of glaciers was found to be strongly correlated with glacier ratio. In general, the hydrological regulation function of glaciers would decrease in the future along with warming induced glacier retreat. These findings would help deepen the understanding of runoff processes on the Tibetan Plateau and other alpine regions, thus providing a scientific basis for water resources management under climate change.
Forecasting / Monsoons / Glaciers / Temperature / Runoff / River basins Record No:H051663
The study was conducted in Heban Arsi district, Central Rift Valley, Ethiopia to investigate the contribution of participatory forest management (PFM) to improving household’s livelihood assets and mitigating forest degradation. Data were gathered using household surveys, observation, key informant interviews and focus group discussions. During the entire study, 231 households (131 from PFM; 100 form non-PFM households), 35 key informants (25 from PFM; 10 from non-PFM) and 10 focus groups (6 from PFM; 4 from non-PFM) were involved. The livelihood assets framework was used to organize and analyze the quantitative data. The qualitative data was analyzed using topic coding and building categories, themes, and patterns of relationships. The introduction of PFM significantly (P lt; 0.05) improved the overall natural (index value of 0.72 and 0.58 for PFM and non-PFM, respectively), financial (0.73 and 0.61), physical (0.49 and 0.37), human (0.62 and 0.57) and social (0.77 and 0.59) livelihood asset values of local communities and contributed to the mitigation of forest degradation. On average, households involved in PFM displayed a 61.6%, 45.7%, 30.8% and 24.2% improvements in natural, financial, physical, and social assets, respectively. Households engaged in PFM showed a 37.4% improvement on the overall livelihood assets value, suggesting that PFM households displayed better livelihood assets compared to non-PFM households. However, the overall contribution of PFM to the livelihood assets showed skewed structure, suggesting that the improvements deviate from sustainability. The existing institutional structure including bylaws contributed a lot to strengthen PFM. Yet, it is crucial to strengthening the protection of forestlands through improving rule enforcement and commitments of both formal and informal institutions in managing forest resources. Also, sustaining the extraction of wood and non-wood forest products and the benefits from as well as integration of other interventions in PFM areas such as the provision of improved cook stoves and solar PV could help reduce forest degradation, improve the sense of ownership among local communities and sustain PFM activities. Further, expanding capacity building trainings and improving access to market could play a great role to sustainably manage forest resources through increasing the participation of local communities in decision making processes.
We advance a gender equality and social inclusion (GESI) framework for incorporating climate information services (CIS), which is now becoming central due to the ongoing climate change and climate variability. We understand gender as a social construct of who women and men are supposed to be. Gender inequalities seem to be enduring such that, despite innovations in agricultural and climate information technologies, unequal gender power dynamics will still emerge. As far back as the 1960s, the gendered inequalities in accessing technologies could be identified. Such a historical analysis clearly shows that the different technological solutions are clearly embedded within the society in which they evolve in. The paper uses a literature review methodological approach whilst informing the implementation of an ongoing Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA) Project. The findings reveal that unless women are intentionally included in designing and developing agricultural technologies, specifically climate information systems, there is a danger that women will be excluded from the benefits. Conway’s law clearly stipulates that technological innovations are not neutral as they are a projection of the values of their creators. It is, therefore, central to grasp the values of creators of different technological solutions and innovations. The key findings are built around the espoused conceptual framework, which has five indicators, namely: (1) gender targeting by intentional design, (2) collection of sex-disaggregated data, (3) conduct an analysis of the sex-disaggregated data, (4) dissemination of the technological options and (5) conduct continuous monitoring of gender and ongoing empowerment evaluation. The five indicator domains are further complemented by their respective assumptions. Our GESI recommendations are on the five selected indicator domains. These domains must be used within the three focal development areas: agricultural data hub, climate information services training, and flood and drought indicators, which are all being implemented in Zambia. Other AICCRA Project countries are Ethiopia, Ghana, Kenya, Mali, and Senegal. This paper engages why CIS has not gained significant traction in Africa, as it has not genuinely incorporated the differential gender technological nuances.
Empowerment / Women / Climate variability / Climate change / Technology / Access to information / Climate services / Frameworks / Social inclusion / Gender equality Record No:H051578
The agricultural activities contribute to the largest share of water consumption in the arid and semi-arid basins. In this study, we demonstrate the application of Water Accounting Plus (WA+) for estimation of the green water consumption (ETGreen) and blue water consumption (ETBlue) for assessing the water productivity (WP) and land productivity (LP) to identify the bright-spots and hot-spots at the district administrative unit level for effectively managing the scarce water resources and sustaining food security in a highly non-resilient semi-arid basin of India. The WA+ framework uses satellite remote sensing datasets from different sources for this purpose and we used the data from 2003 to 2020. The long-term average of ETGreen and ETBlue in the Mahi basin is found to be 15.8 km3 /year and 12.32 km3 /year, respectively. The blue water index (BWI) and green water index (GWI) in the basin vary from 0.282 to 0.598 and 0.40–0.72. We found that the BWI is highest for the districts of Gujarat, whereas, the GWI is highest for the districts of Madhya Pradesh. The long-term average of the LP and WP for both the irrigated and rainfed cereals in the basin is found as 2287.71 kg/ha amp; 1713.62 kg/ha and 0.721 kg/ m3 amp; 0.483 kg/m3 , respectively from 2003 to 2020. The WP (rainfed) of all the districts of the Gujarat is comparatively lower (varying from 0.34 kg/m3 to 0.5 kg/m3 ) than the districts of the Madhya Pradesh (varying from 0.59 kg/m3 to 0.70 kg/m3 ) and the Rajasthan (varying from 0.48 kg/m3 to 0.73 kg/m3 ). Based on the results, we found that the Ratlam district of the Madhya Pradesh has both highest LP and WP (irrigated) as 2573.96 kg/ha and 2.14 kg/m3 , respectively among all the districts of the Mahi basin, and hence it is classified as the ‘Bright spot-district’. The Anand district is found to have the lowest WP and LP as 0.44 kg/m3 and 2467.51 kg/ha, respectively and hence it is classified as the ‘hot spot-district’. For rainfed cereals, we found that the Neemuch district of Madhya Pradesh has the highest WP and LP as 0.59 kg/m3 and 1948.13 kg /ha, respectively, and the Anand district with the lowest WP as 0.34 kg/m3 and LP of 1572.21 kg/ha, respectively. Therefore, we classified the Neemach district as the ‘Bright spot-district’ and the Anand district as the hot spot- district for rainfed cereals. These findings will help develop sustainable and actionable agricultural water management plans by the policymakers and stakeholders in the basin.
Case studies / Semiarid zones / Evapotranspiration / Estimation / Frameworks / Datasets / Remote sensing / Satellite observation / Water productivity / Land productivity / Water use Record No:H051577
Large-scale male outmigration has placed new pressures on both men and women, especially regarding labour division in farm households and involvement in Water Users Associations (WUAs). This paper illustrates how the interplay between existing gender norms, male migration, remittances, and alternative sources of male labour influence women’s agency and WUA decision-making processes in Nepal. Despite official quotas aimed at promoting women’s participation in WUAs, some women prefer to monetise membership contributions rather than actively engage with the organisation. Others pursue strategic interests through changing WUA rules and, in the process, bringing about an adjustment of cultural norms. Women’s agency is derived not only from their knowledge of irrigation systems features and their ability to manage them; it is also related to their ability to learn new organisational skills and to apply them in the WUA context to negotiate and mobilise rules and resources. Women (re)shape their WUA involvement in conjunction with their farming strategies, their view of the WUA’s functionality, and whether they perceive the involvement as either an opportunity for productive engagement or as merely an increase in their already heavy workload.
Maintenance / Canals / Institutions / Water user associations / Migration / Strategies / s participation / Womenapos / Gender / Irrigation management / Irrigation systems Record No:H051576
Study region: Akaki is a headwater catchment of Awash River Basin that hosts the capital city of Ethiopia, Addis Ababa. The area encompasses several agglomerated towns, water supply, and hydropower reservoirs and is characterized by a chain of mountains and floodplains. Due to basin rainfall, and the expansion of urbanized areas, the catchment is frequently affected by flooding. Study focus: This study evaluates dynamic Bayesian Model Averaging (BMA) approach to improve rainfall estimation over the catchment by blending four high-resolution satellite rainfall estimate (SRE) products. Using daily data (2003–2019) observed at thirteen stations as a reference, seven statistical metrics served to assess the point and spatial scale accuracy of the rainfall estimates.
New hydrological insights: Main findings from this study are: (i) the blended product outperformed the individual SRE products by notably improving correlation with in-situ observed rainfall, and reducing the error of the estimated rainfall, (ii) the blended and individual SRE products performed better in the highlands than the lowlands of the catchment, and (iii) the amount of daily rainfall during the main-rainy season was mostly overestimated by the individual SRE products but was fairly estimated by the blended product. This study showed the nonexistence of surpassing individual SRE products and emphasized the blending of several products for gaining optimal results from each product.
Precipitation / River basins / Models / Bayesian theory / Satellite observation / Urban areas / Catchment areas / Estimation / Rain Record No:H051574
Governments in countries in Sub-Saharan Africa (SSA) are keen to expand irrigation to improve food security and are placing particular emphasis on adoption and use of smallholder private groundwater irrigation. Yet private irrigation is a multi-stage technology, the adoption of which is affected by fiscal support and extension services offered on different investment stages but also by uncertainties around actions that need to be undertaken in these stages. Groundwater-based irrigation in Ethiopia presents a case where policy has focused on fiscally easing the purchase of pumps while considerable ambiguity (unquantifiable uncertainty) exists around the outcomes of drilling boreholes (reaching water). In this paper, we examine farmers’ willingness to adopt smallholder private irrigation packages in response to lower pump prices following tax breaks, loan availability, and reduction in ambiguities related to borehole drilling, using a discrete choice experiment (DCE) in two districts of Ethiopia. The results indicate that the provision of loans and reduction in ambiguities related to well drilling have the greatest effect on the probability of farmers adopting irrigation packages. Lowering pump prices has the smallest effect. Pump-type has a small effect, with energized pumps preferred over manual ones. In exploring heterogeneity in preferences, we find that farmers without irrigated plots and those with greater market access have a greater preference for the provision of loans, while those with greater market access also have greater preferences for reductions in well drilling ambiguities. The results of this choice experiment suggest that reducing ambiguities around well drilling (initial investments) is an essential and cost-effective step toward expanding groundwater-based irrigation in Ethiopia.
An accurate estimate of crop coefficient (Kc) values at different development stages (Kcini, Kcmid, and Kcend) is crucial for assessing crop water requirements in semi-arid regions. The objectives of this study were first to quantify the reference evapotranspiration (ETo) and to calculate the actual evapotranspiration (ETa) over citrus in a semi-arid climate under drip irrigation. For this purpose, a site of a citrus orchard in Souss-Massa, planted with the Esbal variety of clementine, was equipped with an Eddy-Covariance (EC) system, and sensors to measure radiation, soil heat flux, and micrometeorological forcing data, during 2020 and 2021 seasons. Also, the soil moisture content at various soil depths in the root zone near the EC tower was monitored. The energy balance closure (EBC) approach was adopted for flux assessment to ensure a quality check for the EC measurements. The obtained EBCs were about 82% and 79% for the daily measurements in 2020 and 2021, respectively, which can be considered acceptable considering the nature of the citrus orchard (relatively tall and sparse). Second, the study aimed to estimate actual Kc act values for citrus under the same irrigation strategy. The derived values were compared to different recommended Kc values in the literature. In the third stage, this work aimed to offer an alternative plan to sustainable irrigation management by elaborating an irrigation schedule for citrus crops in the region using the FAO-56 simple approach to avoid water stress and deep percolation (i.e., Ks = 1 and DP = 0). Eventually, an irrigation schedule was drawn following the crop’s phenological stages. The seasonal mean citrus evapotranspiration (ETa) values are 1.68, 3.02, and 1.86 mm/day for the initial, mid, and end-season. The seasonal actual Kc act values were 0.64, 0.58, and 0.64 for Kcini, Kcmid, and Kcend, respectively. Additionally, the application of the water balance equation revealed that a large quantity of water is lost through deep percolation (52% of total water supplied). The study focuses on Citrus trees being a strategic crop with important socio-economic values in the Souss-Massa region. Thus, the results should support both scientists and farmers in planning and strategy development.
Eddy covariance / Mediterranean climate / Crop water use / Rain / Water stress / Water supply / Irrigation scheduling / Irrigation management / Water management / Agriculture / Energy balance / Soil water balance / Commercial farming / Semiarid climate / Deep percolation / Evapotranspiration / Citrus / Irrigated farming Record No:H051504
The improvement of Earth Observation (EO) sensors and modern computational efficiency in the form of cloud analytics platform has made monitoring and interpretation of floods much more efficient. In this study, we present the recently occurred floods in the north-central section of the Irrawaddy River, inundating the adjoining farmlands on the active floodplains along a stretch of 228 km. The amount of rainfall was observed to have gradually risen from early June 2022 captured through GPM data. Similarly, the water levels in the study stretch were observed to have increased from 98.08 m to 104.08 m (from Sentinel-3 altimetry) due to torrential rains on the northern hilly tracts of Myanmar. High-resolution Sentinel-1 SAR datasets have been used to estimate flood progression in the GEE platform. The total inundated area had risen from 196 to 989 sq. km. throughout June till the first week of July. Thus, EO data associated with accessible computing on cloud platforms help monitor flood progression, warn the community well in advance and support the development of crop insurance strategies, anticipatory actions and many more to strengthen evidence-based flood policy.
As groundwater levels steadily decline in India, authorities are concerned about reducing extraction for irrigation purposes without jeopardizing food security. Very low or zero prices for electricity and water in agriculture is partly responsible for overextraction, but charging higher prices is politically not feasible. In this study, we describe the results of a pilot scheme implemented in Punjab, India, where farmers who enrolled were allocated a monthly entitlement of electricity units and compensated for unused electricity. Eight hours of uninterrupted daytime electricity supply were also provided under the scheme instead of the usual mix of daytime and night-time supply. Analyzing data from a cross-sectional farm household survey and instrumenting for enrollment, we find that self-reported hours of irrigation for enrolled farmers were significantly lower than for non-enrolled ones, with no impact on rice yields. We also find a reduction in monthly electricity consumption at electricity-feeder level due to the pilot scheme using the synthetic control method. Our results suggest that the combination of daytime electricity provision and cash incentives for unused electricity has the potential to incentivize farmers to reduce electricity consumption and irrigation hours by at least 7.5% and up to 30% without impacting paddy yields.
Investments in land management practices, such as stone and soil bunds, are a key strategy to recover degraded lands in Ethiopia. However, the benefits of these practices in relation to ecosystem services are not properly assessed and documented. Therefore, the objective of this study was to assess the benefits of land management practices in relation to provisioning, supporting and regulating ecosystem services. The study was conducted in four watersheds with selected indicators of provisioning, supporting and regulating ecosystem service. Generally, the results show that provisioning services (e.g. yield of crops), regulating services (e.g. organic matter accumulation) and supporting services (e.g. soil nutrient content) were improved with age of stone and soil bunds except in Jawe-gumbura watershed. Accordingly, in Alekit-wonz watershed, the grain yield of barley recorded from 4-year-old stone bunds was higher than the yield recorded from 2-year old soil bund. Similarly, in Borodo watershed, the grain yield of wheat from 5-year-old soil bunds was higher than the yield obtained from the control treatment. The results also showed that highest regulating and supporting ecosystem services were recorded in the accumulation zones in all watersheds compared with erosion zone. Similarly, the highest provisioning services were recorded at the accumulation zone in all watersheds. This shows that land management practices are effective to improve supporting, regulating and provisioning ecosystem services. Hence, more investments in land management are needed to enhance ecosystem services from degraded lands of Ethiopia.
Case studies / Soil properties / Nutrients / Crop yield / Water conservation / Soil conservation / Agroecological zones / Watersheds / Ecosystem services / Land management Record No:H051078
Participatory Geographic Information Systems (PGIS) is an empowering tool for the enhancement of local communities’ participation in the planning and management of natural resources. The inadequate involvement of local stakeholders in rangeland planning and management has been of great concern. Discussions on the role of PGIS and collaborative management approaches in promoting local involvement in rangeland management has not been clearly understood due to the scarcity of literature. This paper assessed how local participation in rangeland management can be enhanced using a combined collaborative management framework and PGIS approach. The objective was achieved through a focus group discussion, local ecological knowledge mapping and key informant interviews. The combined PGIS and collaborative management approach enabled the empowerment of local actors through knowledge enhancement, encouraged the practice of rangeland governance and the transfer of responsibility to local actors. This study provides a conceptual contribution toward the improvement of local actors’ participation in rangeland management.
Empowerment / Local knowledge / Pastoralists / Stakeholders / Planning / Collaboration / Geographical information systems / Participatory approaches / Rangelands Record No:H050968
Access to sufficient clean water is important for reducing the risks from COVID-19. It is unclear, however, what influence COVID-19 has had on water insecurities. The objective of this study was to assess the associations between COVID-19 control measures and household water insecurities. A survey of 1559 individuals living in vulnerable communities in five countries (Cambodia, Laos, Myanmar, Thailand, Vietnam) showed that increased needs for clean water to wash hands or facemasks made it more likely a person was water insecure along those dimensions. Water insecurities with respect to handwashing and drinking, in turn, made adoption of the corresponding good practices less likely, whereas in the case of washing facemasks there was no association. Water system infrastructure, environmental conditions such as foods and droughts, as well as gender norms and knowledge, were also important for water insecurities and the adoption of good practices. As domestic water insecurities and COVID-19 control measures are associated with each other, efforts should therefore be directed at identifying and assisting the water insecure at high risk when COVID-19 reaches their communities.
Socioeconomic environment / Risk reduction / Women / Gender / Water systems / Water quality / Drinking water / Good practices / Hand washing / Water, sanitation and hygiene / Goal 6 Clean water and sanitation / Sustainable Development Goals / Communities / Vulnerability / Households / COVID-19 / Water insecurity Record No:H050959
Development of irrigation technologies and agricultural water management systems holds significant potential to improve productivity and reduce vulnerability to climate change. Our study dealt with the behavior of irrigation water productivity, partial nutrient balance and grain yield of wheat under the application of different irrigation water management technologies in the Koga irrigation scheme in Ethiopia. For our analysis, we considered three nutrient fluxes entering and leaving farmers’ fields. Our experimental design had three irrigation blocks with three different irrigation water management practices (wetting front detector, Chameleon soil moisture sensor and farmers’ practice as control) on three farm plots replicated in each block. To calculate irrigation water productivity and grain yield of wheat, the amount of irrigation water applied and the agronomic attributes of wheat yield were recorded during the irrigation period. Further, three input and output variables were considered to determine the partial nutrient balances of nitrogen (N), phosphorus (P) and potassium (K). The results showed that the amount of irrigation water used was 33% and 22% less with a wetting front detector and Chameleon sensors, respectively, compared to the farmers’ practice. The wetting front detector (WFD) and Chameleon sensor (CHS) treatments gave a 20% and 15.8% grain yield increment, respectively, compared to the farmers’ practice plot. The partial nutrient balances of N and K were negative for the wetting front detector and chameleon sensor practices while it was positive for P in the control (farmers’ practice) treatment. We conclude that irrigation water management with appropriate technologies can improve yield, water productivity and the nutrient utilization. However, further research needs to be conducted on the suitability of irrigation management technologies to achieve full nutrient balance.
Irrigation schemes / Irrigated farming / Wheat / Technology / Water management / Nutrient balance / Water productivity / Irrigation water / Crop yield Record No:H051887
Successful community institutions in the global South, which are contributing to livelihoods’ improvement while conserving water and other natural resources, can sustainably build the resilience that policy makers at different tiers are seeking. This article assesses different models of community institutions in Nepal in governing water resources from various lenses, based on Ostrom’s and others’ design principles, including bricolage. Illustrated by three empirical cases, it analyses key features of community institutions in integrated water governance, their contributions to health, nutrition, food security, and environmental conservation, and ways for empowering these institutions as viable and sustainable solutions to address various livelihood challenges. However, inequalities along gender, caste, and ethnicity lines persist. We argue that the recently established local governments under the federal system in Nepal provide new opportunities for gender and social inclusion.
Gender / Community organizations / Water management / Sustainable livelihoods / Water governance Record No:H051671
Background: Climate change has perverse efects on the natural resource base and agricultural productivity, negatively afecting the well-being of households and communities. There are various attempts by the government and NGOs to promote climate-smart agricultural (CSA) practices to help farmers adapt to and mitigate these negative impacts. This study aimed to identify CSA practices widely adopted in the study area and examined their impacts on rural farm households’ food security and multidimensional poverty. A three-stage proportional to size sampling procedure was followed to select four districts out of nine districts, and 278 households were randomly selected from two kebeles from each district. A cross-sectional data of the 2020–2021 cropping season were collected using a structured and pretested survey questionnaire. The food consumption score, dietary diversity score, food insecurity experience scale, and multidimensional poverty index, constructed out of 9 indicators, were used to assess households’ food security and poverty status, respectively. A multinomial endogenous switching regression model was used to assess average treatment efects on these outcome indicators.
Results: Widely adopted CSA practices are conservation agriculture, soil fertility management, crop diversifcation, and small-scale irrigation. The results illustrated that adopter households on average showed more food consumption score, dietary diversity score, and less food insecurity experience scale than non-adopters. The results also showed that CSA adopter households, on average, have a low deprivation score in multidimensional poverty than non-adopter households. Accelerating wider adoption of CSA through up-scaling incentives is quite important.
Conclusion: This study showed that CSA adoption improves households’ food security and reduces multidimensional poverty. We conclude that up-scaling of CSA practices is important for contributing to the achievement of SDG1, SDG2 and SDG13 targets.
Jorde, K.; Alapfy, B.; Schwedhelm, H.; Siegfried, T.; Habersack, H.; De Keyser, J.; Hayes, D. S.; Purushottam, A.; Schneider, M.; Anarbekov, Oyture. 2022. EU supports small hydropower in Central Asia.International Journal on Hydropower and Dams, 29(5):52-59. More...
Through the innovation project ‘Hydro4U’, the European Union (EU) under its Horizon 2020 funding scheme is funding the development and optimization of sustainable and practical technologies, planning methods and assessment tools in the area of small-scale hydropower with the primary goal to enhance their application in Central Asia. Thirteen partners, from the EU and from Central Asia, scientific institutions, consultants, industry partners and NGOs are collaborating over a period of five years to generate a sustainable impact on Central Asia by finding new ways to deal with the challenges that normally arise with hydropower development, covering technical, ecological, economic and social aspects.
Sustainability / Ecological factors / Planning / Hydrology / Funding / European Union / Hydropower Record No:H051661
The challenges to agroecological transitions are not the same for all farmers and implementation of agroecological practices in different locations could yield different results. With this consideration, this study was conducted in Aba-Garima watershed in northwestern Ethiopia to characterize the structure and activities of farming households and assess factors influencing the implementation and sustainability of agroecological practices. Data were collected from 218 households, 16 key informants, and 12 focus group discussions. The Multivariate Probit model and descriptive statistics were employed to analyze factors influencing farmers’ choices of different agroecological practices and describe the characteristics of farming households. The qualitative data analysis was processed through topic coding and building categories, themes, and patterns of relationships. Farmers realize the importance of both farm and landscape level agroecological practices to enhance income earning capacity, achieve food security and protect the environment. However, most of the agroecological practices are very difficult to start using for various constraining factors including limited access to water, and shortages of money, land and labor. The results suggest that depending on different socioeconomic characteristics of farming households, agroecological practices that appear common practices can be very difficult to use for some farmers, while it would be possible for other farmers. The constraining factors are also differently associated with different practices, involving diverse perspectives of different socioeconomic groups. The paper discussed the existing agroecological practices, the perspectives of different socio-economic groups on these practices and the factors influencing the implementation as well as the conditions that can facilitate the wider adoption of agroecological practices in the study area.
Socioeconomic aspects / Farmers / Land cover / Land use / Income / Households / Food security / Watersheds / Environmental protection / Agroecology Record No:H051643
Research-engaged decision making and policy reform processes are critical to advancing resilience, adaptation, and transformation in social-ecological systems under stress. Here we propose a new conceptual framework to assess opportunities for research engagement in the policy process, building upon existing understandings of power dynamics and the political economy of policy reform. We retrospectively examine three cases of research engagement in small-scale fisheries policy and decision making, at national level (Myanmar) and at regional level (Pacific Islands region and sub-Saharan Africa), to illustrate application of the framework and highlight different modes of research engagement. We conclude with four principles for designing research to constructively and iteratively engage in policy and institutional reform: (a) nurture multi-stakeholder coalitions for change at different points in the policy cycle, (b) engage a range of forms and spaces of power, (c) embed research communications to support and respond to dialogue, and (d) employ evaluation in a cycle of action, learning, and adaptation. The framework and principles can be used to identify entry points for research engagement and to reflect critically upon the choices that researchers make as actors within complex processes of change.
Fish trade / Political aspects / Ecological factors / Social aspects / Stakeholders / Decision making / Frameworks / Partnerships / Governance / Policies / Research / Small-scale fisheries Record No:H051642
Martin, M. A.; Boakye, E. A.; Boyd, E.; Broadgate, W.; Bustamante, M.; Canadell, J. G.; Carr, E. R.; Chu, E. K.; Cleugh, H.; Csevar, S.; Daoudy, M.; de Bremond, A.; Dhimal, M.; Ebi, K. L.; Edwards, C.; Fuss, S.; Girardin, M. P.; Glavovic, B.; Hebden, S.; Hirota, M.; Hsu, H.-H.; Huq, S.; Ingold, K.; Johannessen, O. M.; Kameyama, Y.; Kumarasinghe, N.; Langendijk, G. S.; Lissner, T.; Lwasa, S.; Machalaba, C.; Maltais, A.; Mathai, M. V.; Mbow, C.; McNamara, K. E.; Mukherji, Aditi; Murray, V.; Mysiak, J.; Okereke, C.; Ospina, D.; Otto, F.; Prakash, A.; Pulhin, J. M.; Raju, E.; Redman, A.; Rigaud, K. K.; Rockstrom, J.; Roy, J.; Schipper, E. L. F.; Schlosser, P.; Schulz, K. A.; Schumacher, K.; Schwarz, L.; Scown, M.; Sedova, B.; Siddiqui, T. A.; Singh, C.; Sioen, G. B.; Stammer, D.; Steinert, N. J.; Suk, S.; Sutton, R.; Thalheimer, L.; van Aalst, M.; van der Geest, K.; Zhao, Z. J. 2022. Ten new insights in climate science 2022.Global Sustainability, 5(e20):1-20. [DOI] More... | Fulltext (596 KB)
Non-technical summary:
We summarize what we assess as the past yearapos;s most important findings within climate change research: limits to adaptation, vulnerability hotspots, new threats coming from the climate–health nexus, climate (im)mobility and security, sustainable practices for land use and finance, losses and damages, inclusive societal climate decisions and ways to overcome structural barriers to accelerate mitigation and limit global warming to below 2C.
Technical summary:
We synthesize 10 topics within climate research where there have been significant advances or emerging scientific consensus since January 2021. The selection of these insights was based on input from an international open call with broad disciplinary scope. Findings concern: (1) new aspects of soft and hard limits to adaptation; (2) the emergence of regional vulnerability hotspots from climate impacts and human vulnerability; (3) new threats on the climate–health horizon – some involving plants and animals; (4) climate (im)mobility and the need for anticipatory action; (5) security and climate; (6) sustainable land management as a prerequisite to land-based solutions; (7) sustainable finance practices in the private sector and the need for political guidance; (8) the urgent planetary imperative for addressing losses and damages; (9) inclusive societal choices for climate-resilient development and (10) how to overcome barriers to accelerate mitigation and limit global warming to below 2C.
Social media summary:
Science has evidence on barriers to mitigation and how to overcome them to avoid limits to adaptation across multiple fields.
Political aspects / Social aspects / Inclusion / Gender / Finance / Health / Governance / Policies / Economics / Biodiversity / Ecology / Foods / Energy / Water / Private sector / Sustainable land use / Emission / Global warming / Climate resilience / Vulnerability / Climate change mitigation / Climate change adaptation Record No:H051580
For the first time in the latest Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), water has been the focus of dedicated chapters in both Working Group 1 (Chapter 8) and 2 (Chapter 4). Nevertheless, we argue here that water has not yet received the full attention it deserves from both scientists and policymakers for several reasons. Firstly, the historical focus on temperature change has been further increased with the use of global warming levels motivated by an aim to be consistent with current policy framings. Secondly, an increasing attention paid to extreme weather has sometimes overshadowed longer time-scale changes such as the aridification of an increasing fraction of arable land and the increasing variability of the water cycle from month to month, season to season, and year to year that also yield cascading impacts on all water use sectors. Thirdly, a stronger focus is needed on understanding the effectiveness of current and future adaptation strategies in reducing water-related climate risks. Finally, the role of water has not been adequately recognized in the assessment of mitigation strategies although the compliance with the Paris Agreement and the current pledges all require a massive deployment of land-based strategies whose feasibility and efficiency heavily depend on water resources. It is thus essential to develop a more integrated approach to water and climate change, that would allow scientists and policymakers to “close the loop” between mitigation options, water cycle changes, hydrological impacts and adaptation.
Global warming / Temperature / Greenhouse gases / Forecasting / Models / Water footprint / Drought / Hydrological cycle / Policies / Climate change mitigation / Climate change adaptation Record No:H051579
Study region: The Akaki catchment is found in the Upper Awash River Basin in Ethiopia.
Study focus: Understanding the accuracy of rainfall forecasts in the data-scarce urban catchment has a multitude of benefits given the increased urban flood risk caused by climate change and urbanization. In this study, accuracy of the weather research and forecasting (WRF) model rainfall forecast was evaluated using citizen science data. Categorical and continuous accuracy evaluation metrics were used beside gauge representativeness effect.
New hydrological insights for the region: The rainfall forecasts performance accuracy is high for 1–3- days lead-time but deteriorates for 4–5-days lead-time. The WRF model captured the temporal dynamics and the rainfall amount according to the estimated KGE values. The model has relatively higher detection performance for no rain and light rain events (lt; 6 mm/day), but it has lower performance for moderate and heavy rain events (gt; 6 mm/day). Use of data from a single rain gauge misrepresents the accuracy level of the rainfall forecast in the study area. The gauge representativeness error contributed a variance of 28.08–83.33 % to the variance of WRF-gauge rainfall difference. Thus, the use of citizen science rainfall monitoring program is an essential alternative source of information where in-situ rainfall monitoring is limited that can be used to understand the “true” accuracy of WRF rainfall forecasts.
Monitoring / Weather data / Catchment areas / Urban areas / Citizen science / Models / Weather forecasting / Rain Record No:H051575
Over the last two decades, several data sets have been developed to assess flood risk at the global scale. In recent years, some of these data sets have become detailed enough to be informative at national scales. The use of these data sets nationally could have enormous benefits in areas lacking existing flood risk information and allow better flood management decisions and disaster response. In this study, we evaluate the usefulness of global data for assessing flood risk in five countries: Colombia, England, Ethiopia, India, and Malaysia. National flood risk assessments are carried out for each of the five countries using six data sets of global flood hazard, seven data sets of global population, and three different methods for calculating vulnerability. We also conduct interviews with key water experts in each country to explore what capacity there is to use these global data sets nationally. We find that the data sets differ substantially at the national level, and this is reflected in the national flood risk estimates. While some global data sets could be of significant value for national flood risk management, others are either not detailed enough, or too outdated to be relevant at this scale. For the relevant global data sets to be used most effectively for national flood risk management, a country needs a functioning, institutional framework with capability to support their use and implementation.
Citizen Science can fulfill the quest for high-quality and sufficient environmental data, such as rainfall. However, the factors affecting the quality of rainfall data collected by the citizen scientists are not well understood. In this study, we examined the effect of citizen scientists’ attributes on the quality of rainfall data. For this purpose, Principal Component Analysis (PCA), stepwise regression and Multiple Linear Regressions (MLR) were used. A quality control procedure was developed and applied for daily observed rainfall data collected in the summer rainy season of 2020. Attributes of the citizen scientists’ were gathered for those who collected rainfall data in the urban and peri-urban Akaki catchment which is located in the Upper Awash sub-basin, Ethiopia. We found that easy-to-detect errors, which were identified during the initial stage of quality control, formed most of the errors in the rainfall data. The PCA and the stepwise regression results revealed that four dominant attributes (education level, gauge relative location, use of smartphone app, and supervisor’s travel distance) highly affected the rainfall data quality. The MLR model using these four prominent dominant variables performed very well with R2 value of 0.98. The k-fold cross validation result showed that the developed model can be used to predict the relationships between data quality and attributes of citizen scientists with high accuracy. Hence, the PCA technique, stepwise regression and MLR model can provide useful information regarding the influence of citizen scientists’ attributes on rainfall data quality. Therefore, future studies should carefully consider citizen scientists’ attributes when engaging and supervising citizen scientists, with a comprehensive data quality control while monitoring rainfall.
Principal component analysis / Monitoring / Catchment areas / Data quality / Weather data / Rain / Citizen science Record No:H051572
Water management has followed a basin unit paradigm for several decades. This framing often inherits a pre-defined spatial and institutional boundary of analysis, one that largely fails to account for various externalities influencing water security beyond the hydrological unit. Moving away from this established basin-scale analysis, we present the concept of problemscapes, a systems approach for understanding how multiple physical and social drivers surrounding (and as part of) contextual water systems determine how they work and, ultimately, the outcomes in terms of the water security they provide. By first discussing the concept of boundaries for water paradigms, we argue that problemscapes can help us understand water security as a more dynamic and hybrid system by adapting these boundaries; enabling a clearer understanding of leverage points, interconnections and possible strategic solutions to longer-term water security challenges. We apply the method for establishing and utilizing a problemscape analysis across the Central Rift Valley, Upper Awash, and Abbay basins, as well as the capital city of Addis Ababa. The interactions in this part of Central Ethiopia are notoriously complex, with sets of critical water management issues at national and international scale, hybrid water security challenges across user communities, and contested management at different scales amidst multiple, and sometimes competing, ideologies. We show that problemscaping as an approach could support future planning decisions for long-term water security by enabling a systems perspective to emerge where complexity and connectivity between actors, institutions, and physical and social entities is considered.
Land use change / Agriculture / Urbanization / Water management / Water resources / Water security Record No:H051571
Reliance on groundwater in Sub-Saharan Africa is growing and expected to rise as surface water resource variability increases under climate change. Major questions remain about how groundwater will be used, and who informs these decisions. We represent different visions of groundwater use by ‘pathways’: politically and environmentally embedded socio-technological regimes for governing and managing groundwater systems. We presented policy actors (9 sets), development and research stakeholders (4 sets), and water users (6 sets) in three river basins in Ethiopia, Niger and Tanzania with information on the social and environmental impacts of six ‘Groundwater Development Pathways’, before gathering their opinions on each, through Multicriteria Mapping (MCM). Participants preferred pathways of low-intensity use, incorporating multiple agricultural, pastoral and domestic purposes, to high-intensity single-use pathways. Water availability and environmental sustainability, including water quality, were central concerns. Participants recognised that all groundwater uses potentially impinge upon one another affecting both the quantity and quality of abstracted water. Across participant groups there was ambiguity about what the most important water use was; each expressed demands for more detailed, certain modelling data. Water users preferred community or municipal-scale management regimes, perceiving that water quality was more likely to be safeguarded by institutions at these levels, whereas policy and development actors preferred individual-scale management, viewed as more efficient in terms of operation and maintenance. We conclude that MCM, combined with more detailed modelling, can provide an effective framework for policy actors to understand other stakeholders’ perspectives on groundwater development futures, enabling equitable, inclusive decision-making and governance.
Uncertainty / Modelling / Communities / Stakeholders / Groundwater extraction / Environmental sustainability / Water quality / Multiple use / Water users / Water use / Small-scale farming / Large-scale farming / Water availability / Water governance / Water policies / River basins / Groundwater management Record No:H051559
Kalu Ganga, a major tributary of Amban Ganga, is one of the perennial rivers of Sri Lanka. Also, Amban Ganga is a major tributary of Mahaweli Ganga. The Kalu Ganga starts from Knuckles mountains, and about 90% of the catchment is covered with forests. The Government of Sri Lanka constructed Kalu Ganga and Moragahakanda Reservoirs in 2014 to increase the water availability in Mahaweli Basin to improve the agricultural and drinking water benefits in several provinces. This study used the Soil Water Assessment Tool (SWAT) to simulate the hydrology of the Kalu Ganga catchment and estimate the daily streamflow series of the Kalu Ganga. The long-term mean annual flow of the Kalu Ganga at the dam site would be 196 MCM (equivalent to 6.24 m3/s) with a standard deviation of 57.5 MCM and coefficient of variation of 0.29. The mean annual catchment rainfall is 2763 mm, streamflow is 59%, and evapotranspiration is 33% of the rainfall. The Kalu Ganga catchment hydrology is dominated by the wet season rainfall, which governs the Kalu Ganga flow, where 89% of the annual flow volume is produced. Further, 67% of the flow volume is produced from November to January. The model results show that 89% of the annual average of streamflow is generated as baseflow, a feature of a perennial river. The high baseflow fraction is hydrologically favourable for the water availability of the catchment as this shows the utilizable quantity of water is high.
Parameters / Soil types / Land use / Rain / Stream flow / Water availability / Rivers / Catchment areas / Hydrological modelling / Reservoir operation Record No:H051558
The Meki catchment in the Central Rift Valley basin of Ethiopia is currently experiencing irrigation expansion and water scarcity challenges. The objective of this study is to understand the basin’s current and future water availability for agricultural intensification. This was done by simulating scenarios through an integrated SWAT-MODFLOW model to assess the water balance. The scenarios were co-developed with communities who expressed their aspirations for agricultural intensification in conjunction with projected climate change. The results show that with the present land use and climate, the catchment is already water stressed and communities cannot meet their irrigation water demand, particularly in the first irrigation season (October–January). However, in the second irrigation season (February–May) water resource availability is better and increasing irrigated area by 50% from the present extent is possible. With a climate change scenario that favours more rainfall and shallow groundwater use, agricultural intensification is feasible to some extent.
Communities / Small-scale irrigation / Water yield / Water requirements / Crop water use / Wells / Shallow water / Land use / Forecasting / Temperature / Rain / Climate change / Water balance / Water budget / Groundwater / Surface water / Catchment areas / Sustainable agriculture / Sustainable intensification / Modelling / Water availability Record No:H051557
The 27th Conference of the Parties (COP27) is being held in November 2022 in Sharm el-Sheikh, Egypt. Having a climate summit hosted in an African country makes it timely to highlight climate change research from the continent. We asked a selection of researchers to share their thoughts on current research questions and how they affect African responses to climate change.
Werner, D.; Acharya, K.; Blackburn, A.; Zan, R.; Plaimart, J.; Allen, B.; Mgana, S. M.; Sabai, S. M.; Halla, F. F.; Massawa, S. M.; Haile, Alemseged Tamiru; Hiruy, A. M.; Mohammed, J.; Vinitnantharat, S.; Thongsamer, T.; Pantha, K.; Filho, C. R. M.; Lopes, B. C. 2022. MinION nanopore sequencing accelerates progress towards ubiquitous genetics in water research.Water, 14(16):2491. (Special issue: Field Methods for Water Quality Surveying) [DOI] More... | Fulltext (1.66 MB)
In 2014, Oxford Nanopore Technologies (ONT) introduced an affordable and portable sequencer called MinION. We reviewed emerging applications in water research and assessed progress made with this platform towards ubiquitous genetics. With gt;99% savings in upfront costs as compared to conventional platforms, the MinION put sequencing capacity into the hands of many researchers and enabled novel applications with diverse remits, including in countries without universal access to safe water and sanitation. However, to realize the MinION’s fabled portability, all the auxiliary equipment items for biomass concentration, genetic material extraction, cleanup, quantification, and sequencing library preparation also need to be lightweight and affordable. Only a few studies demonstrated fully portable workflows by using the MinION onboard a diving vessel, an oceanographic research ship, and at sewage treatment works. Lower nanopore sequencing read accuracy as compared to alternative platforms currently hinders MinION applications beyond research, and inclusion of positive and negative controls should become standard practice. ONT’s EPI2ME platform is a major step towards user-friendly bioinformatics. However, no consensus has yet emerged regarding the most appropriate bioinformatic pipeline, which hinders intercomparison of study results. Processing, storing, and interpreting large data sets remains a major challenge for ubiquitous genetics and democratizing sequencing applications.
Goal 6 Clean water and sanitation / Sustainable Development Goals / Bioinformatics / Biomass / Research / Water Record No:H051555
Groundwater (GW) is a key source of drinking water and irrigation to combat growing food insecurity and for improved water access in rural sub-Saharan Africa. However, there are limited studies due to data scarcity in the region. New modeling techniques such as Machine learning (ML) are found robust and promising tools to assess GW recharge with less expensive data. The study utilized ML technique in GW recharge prediction for selected locations to assess sustainability of GW resources in Ghana. Two artificial neural networks (ANN) models namely Feedforward Neural Network with Multilayer Perceptron (FNN-MLP) and Extreme Learning Machine (FNN-ELM) were used for the prediction of GW using 58 years (1960–2018) of GW data. Model evaluation between FNN-MLP and FNN-ELM showed that the former approach was better in predicting GW with R2 ranging from 0.97 to 0.99 while the latter has an R2 between 0.42 to 0.68. The overall performance of both models was acceptable and suggests that ANN is a useful forecasting tool for GW assessment. The outcomes from this study will add value to the current methods of GW assessment and development, which is one of the pillars of the sustainable development goals (SDG 6).
Study region: Dak Lak province in the Central Highlands of Vietnam
Study focus: Intensification of agriculture has resulted in unsustainably high levels of groundwater use in the Central Highlands. High monsoonal rainfall provides opportunities to boost groundwater storage through managed aquifer recharge (MAR), yet experience with MAR in the region is absent. In response, five farm-scale pilots were implemented in collaboration with local farmers whereby runoff from roofs and fields was recharged into shallow dug wells. The pilots were closely monitored over three years.
New hydrological insights for the region: MAR pilots exhibited large contrasts in performance, with volumes recharged ranging from 5 to 530 m3 per year. Pilot sites with cleaner roof runoff water performed best, whilst those using more turbid water from unpaved roads performed worst. Water quality analyses did not identify parameters of major concern for irrigation. Field data and modelling indicate that the size of the recharge water plumes are small relative to the high groundwater velocities making the recharge water difficult to recover from the recharge well in this setting. Water is however contained locally, providing potential for improved water availability within the local area. Farmer attitudes towards MAR vary in response to the technical performance and a range of socioeconomic factors. These findings may provide insights for researchers or practitioners from other regions where groundwater dependence is high but experience in MAR is lacking.
attitudes / Farmersapos / Pilot projects / Irrigation water / Water storage / Monitoring / Water quality / Runoff / Rain / Groundwater level / Climate resilience / Highlands / Groundwater management / Groundwater recharge / Aquifers Record No:H051505
Urban and peri-urban agriculture (UPA) is widely distributed throughout the Global South. Despite urban population growth and diversifying food habits, UPA delivers an important part of urban food supply, as well as other types of services to cities, such as employment and waste reuse. Nevertheless, the extent and importance of UPA varies between different urban areas, while challenges like limited recognition, land conversion, and water pollution and competition threaten the potential of UPA to contribute to urban resilience. Key investment priorities for research and innovation for overcoming current challenges include incentivized peri-urban zoning, urban allocation of productive lands, and increasing capacities for controlled environment agriculture (CEA). Innovative repositioning of food marketing can help to strengthen supply of healthy food from UPA production, increase decent employment, and turn food markets into nutrition hubs. Priority innovations for contributing to the circular bioeconomy of cities include scaling the safe use of wastewater for irrigation through investments in the adoption of multiple risk-barrier approaches and scaling UPA-based ecosystem services for valorising solid waste and environmental management. Innovations in urban governance are required to support these processes by bringing food systems into urban planning through food mapping and the multisectoral platforms for dialogue and policy formulation across city regions and with vertical levels of government.
Kolkata being a metropolitan city in India has its main municipal solid waste dumpsite situated at Dhapa just adjacent to the East Kolkata Wetlands (Ramsar site). The current prevalent situation at Dhapa is open dumping leading to various contaminations and hazards putting forth the need to look for alternative sites where the landfiilling operation can be shifted to using scientific methods. A user interface (UI)–based analytical hierarchy process (AHP) tool has been developed within the Google Earth Engine (GEE) cloud platform to find out the alternative dumping sites using geospatial layers. AHP function is not available as a native algorithm or developed by any researcher in GEE. The tool has three major functionalities, of which the first one handles the UI elements. The AHP procedure is within another function, and the last function integrates the AHP coefficients to the layers generating the final suitability layer. Users can also upload comparison matrix as GEE asset in the form of CSV file which gets automatically integrated into the AHP to calculate the coefficients and consistency ratio to generate the spatial suitability layers. This approach showcases a generalized AHP function within the GEE environment, which has been done for the first time. The tool is designed in the cloud platform which is dynamic, robust and suitable for use in various AHP-based suitability analysis in environmental monitoring and assessment.
Case studies / Datasets / Landfills / Solid wastes / Urban wastes Record No:H051499
A complex political economy revolves around shared land and water use between Kenyan Turkana and Ugandan Karamojong pastoralists. In response to growing pressure on resources, donors and the Ugandan government are investing in new surface water sources. However, power and political economy issues embedded within societal relationships are rarely factored into water infrastructure development. Drawing on Tony Allan’s teaching, we examine studies of two dams recently constructed in Karamoja and argue that a wider view encompassing power and politics within the Karamoja–Turkana Complex would help ensure more sustainable and effective future water supply development. Allan’s idea that catchments are part of much wider social, political economic and integrated livelihood systems, or problemsheds, is a key concept. Here we argue that adopting this concept in a complex of pastoral systems can improve future water resources planning and intervention in Karamoja, Uganda and similar contexts.
Livelihoods / Dams / Political aspects / Water management / Resilience / Pastoralism / Water security Record No:H051498
Study region: The study region is the Kamadhiya catchment (1150 km2 ), located in the Saurashtra region of the western state of Gujarat, India. The region has seen intensive development of check dams (CDs) for groundwater recharge with an estimated 27,000 CDs constructed up until 2018.
Study focus: The impact of CDs on groundwater storage, food production and resilience are assessed for Kamadhiya catchment by estimating and comparing changes, across periods of low and high CD development, in potential recharge from CDs, rainfall trends, and irrigation demand. The analysis is carried out for the period from 1983 to 2015.
New hydrological insights for the region: Groundwater storage gains observed following CD development can partly be attributed to an increase in high rainfall years after several drought years. Groundwater demand for irrigation has increased substantially, outweighing increase in groundwater recharge from CDs. This deficit in supply relative to demand is greatest in dry years, and when considered together with the low inter-annual carry-over storage of the region’s hardrock aquifers, means that CDs capacity to enhance groundwater storage and mitigate the negative impacts of drought remains limited. Findings suggest that a standalone focus on MAR, unless complemented by greater emphasis on management of water demand and groundwater resources more broadly, may not be sufficient to achieve the long-term goals of sustainable groundwater and concurrently expanding agricultural crop production.
Catchment areas / Groundwater extraction / Drought / Irrigation water / Check dams / Resilience / Food production / Water storage / Aquifers / Groundwater recharge Record No:H051497
Developing and promoting neglected and underutilised crops (NUS) is essential to building resilience and strengthening food systems. However, a lack of robust, reliable, and scalable evidence impedes the mainstreaming of NUS into policies and strategies to improve food and nutrition security. Well-calibrated and validated crop models can be useful in closing the gap by generating evidence at several spatiotemporal scales needed to inform policy and practice. We, therefore, assessed progress, opportunities, and challenges for modelling NUS using a systematic review. While several models have been calibrated for a range of NUS, few models have been applied to evaluate the growth, yield, and resource use efficiencies of NUS. The low progress in modelling NUS is due, in part, to the vast diversity found within NUS that available models cannot adequately capture. A general lack of research compounds this focus on modelling NUS, which is made even more difficult by a deficiency of robust and accurate ecophysiological data needed to parameterise crop models. Furthermore, opportunities exist for advancing crop model databases and knowledge by tapping into big data and machine learning.
Sustainability / Ecophysiology / Climate resilience / Underutilized species / Crop modelling Record No:H051496
Polycentric irrigation water governance allows community institutions to deliver better irrigation services. This study examined the Irrigation Water User Associations (IWUAs) service delivery performance in the Ketar subbasin, Ethiopia, focusing on four irrigation schemes. The irrigation water user associations in the subbasin were measured on their legal registration and financial status, while the four schemes were examined on their bylaw implementation, decision transparency, water allocation, and infrastructure management. Three hundred eleven (311) randomly selected irrigators were surveyed. The study showed that 73 and 21% of the modern and traditional IWUAs in the subbasin are legally registered and collect an average ETB 1200/year/ha which is insignificant for Oamp;M. The four schemesapos; water distribution disparity ranges from 3.5 to 8.4 L/s at farmersapos; plots. 47 and 62% of the respondents depicted their dissatisfaction with the water allocation and satisfaction with IWUAsapos; decision-making transparency, respectively. The study also revealed that the IWUAs are compounded with weak infrastructure management that resulted in substantial water loss ranging from 12 to 49%. Besides, 70% of respondents witnessed a lack of gender-based irrigation incentives for female irrigators. Improving these services makes the polycentric irrigation water governance play an exponential beneficial role in alleviating the consequence of unregulated water use.
Decision making / Water allocation / Water user associations / Irrigation water / Water governance Record No:H051495
Matthews, N.; Dalton, J.; Matthews, J.; Barclay, H.; Barron, J.; Garrick, D.; Gordon, L.; Huq, S.; Isman, T.; McCornick, P.; Meghji, A.; Mirumachi, N.; Moosa, S.; Mulligan, M.; Noble, A.; Petryniak, O.; Pittock, J.; Queiroz, C.; Ringler, C.; Smith, Mark; Turner, C.; Vora, S.; Whiting, L. 2022. Elevating the role of water resilience in food system dialogues.Water Security, 17:100126. [DOI] More... | Fulltext (551 KB)
Ensuring resilient food systems and sustainable healthy diets for all requires much higher water use, however, water resources are finite, geographically dispersed, volatile under climate change, and required for other vital functions including ecosystems and the services they provide. Good governance for resilient water resources is a necessary precursor to deciding on solutions, sourcing finance, and delivering infrastructure. Six attributes that together provide a foundation for good governance to reduce future water risks to food systems are proposed. These attributes dovetail in their dual focus on incorporating adaptive learning and new knowledge, and adopting the types of governance systems required for water resilient food systems. The attributes are also founded in the need to greater recognise the role natural, healthy ecosystems play in food systems. The attributes are listed below and are grounded in scientific evidence and the diverse collective experience and expertise of stakeholders working across the science-policy interface: Adopting interconnected systems thinking that embraces the complexity of how we produce, distribute, and add value to food including harnessing the experience and expertise of stakeholders s; adopting multi-level inclusive governance and supporting inclusive participation; enabling continual innovation, new knowledge and learning, and information dissemination; incorporating diversity and redundancy for resilience to shocks; ensuring system preparedness to shocks; and planning for the long term. This will require food and water systems to pro-actively work together toward a socially and environmentally just space that considers the water and food needs of people, the ecosystems that underpin our food systems, and broader energy and equity concerns.
Information dissemination / Learning / Ecosystems / Climate change / Water resources / Policies / Participation / Decision making / Innovation / Water systems / Water governance / Resilience / Water management / Food systems Record No:H051489
The sustainable agricultural intensification (SAI) debate, partly rooted in discussions over the Green Revolution, was developed in the 1990s in the context of smallholder agriculture in Africa. In many Sub-Saharan African (SSA) countries, production is still largely rainfed, with the prevalence of significant yield gaps and rapid environmental degradation. Projections indicate that climate and demographic changes will further intensify the competition for freshwater resources. Currently, SAI is centered around predominantly rain-fed agricultural systems, often at a farm and plot scales. There has been increased attention to the improved role of agricultural water management (AWM) to address the daunting challenges of climate change, land degradation and food and nutritional insecurity in SSA. Nonetheless, the supporting frameworks and tools remain limited and do not connect the sustainability assessment and the development of intensification pathways (SIP) along multiple scales of the rainfed irrigation continuum. This paper reviews the gaps in concepts and practices of SAI and suggests a methodological framework to design context-specific and water-centered SIP for the SSA region. Accordingly, the proposed methodological framework demonstrates: (a) how to couple sustainability assessment methods to participatory SIPs design and adaptive management approach; (b) how contextualized sustainability domains and indicators can help in AWM centered SIP development; (c) the approaches to handle multiple scales and water-related indicators, the heterogeneity of biophysical and social settings when tailoring technology options to local contexts; and (d) the principles which enable the SIP designs to enable synergies and complementarities of SAI measures to reinforce the rainfed-irrigation continuum. This methodological framework allows researchers to integrate the sustainability assessment and SIP design, and guides policymakers and practitioners in planning, implementing and monitoring SAI initiatives (e.g., Framework for Irrigation Development and Agricultural Water Management in Africa) across multiple scales.
Social aspects / Environmental sustainability / Economic aspects / Farmers / Food security / Climate change / Water use efficiency / Water resources / Ecosystem services / Food systems / Indicators / Assessment / Water management / Sustainable intensification / Sustainable agriculture Record No:H051488
Knowing the spatial and temporal suitability of neglected and underutilised crop species (NUS) is important for fitting them into marginal production areas and cropping systems under climate change. The current study used climate change scenarios to map the future distribution of selected NUS, namely, sorghum (Sorghum bicolor), cowpea (Vigna unguiculata), amaranth (Amaranthus) and taro (Colocasia esculenta) in the KwaZulu-Natal (KZN) province, South Africa. The future distribution of NUS was simulated using a maximum entropy (MaxEnt) model using regional circulation models (RCMs) from the CORDEX archive, each driven by a different global circulation model (GCM), for the years 2030 to 2070. The study showed an increase of 0.1–11.8% under highly suitable (S1), moderately suitable (S2), and marginally suitable (S3) for sorghum, cowpea, and amaranth growing areas from 2030 to 2070 across all RCPs. In contrast, the total highly suitable area for taro production is projected to decrease by 0.3–9.78% across all RCPs. The jack-knife tests of the MaxEnt model performed efficiently, with areas under the curve being more significant than 0.8. The study identified annual precipitation, length of the growing period, and minimum and maximum temperature as variables contributing significantly to model predictions. The developed maps indicate possible changes in the future suitability of NUS within the KZN province. Understanding the future distribution of NUS is useful for developing transformative climate change adaptation strategies that consider future crop distribution. It is recommended to develop regionally differentiated climate-smart agriculture production guidelines matched to spatial and temporal variability in crop suitability.
Forecasting / Models / Machine learning / Taro / Amaranthus / Cowpeas / Sorghum / Nutrition security / Food security / Climate change adaptation / Spatial distribution / Underutilized species / Crop production Record No:H051487
Food demand in Africa continues to outstrip local supply, and the continent currently spends over US$35 billion annually on food imports to supplement local deficits. With the advances in agronomy and breeding, commercial crops like maize (Zea mays) and soybean (Glycine max) in the region are under threat from climate change, decreasing rainfall and degraded lands. Unlike commercial crops that are generally adapted from other regions, underutilized indigenous crops are uniquely suited to local environments and are more resilient to climatic variations and tolerant to local pests and diseases. This study, done in Limpopo Province, South Africa, identifies optimal areas for cultivating Bambara groundnuts (Vigna subterannea), an indigenous crop suitable for arid and semi-arid regions. The aim is to promote the production of underutilized indigenous crops at a large scale with fewer resources, while still meeting local demand and reducing the food import budget. Suitability maps are delineated using a multicriteria decision method in a Geographic Information System (GIS). The procedure is important for diversifying farming systems, making them more resilient (to biotic and abiotic stresses and climate change) and more successful at enhancing water, food and nutritional security. With the province’s limited water and land resources for agriculture expansion, promoting indigenous underutilized crops is a pathway to reduce water allocated to agriculture, thereby enhancing drought resilience and ensuring water, food and nutritional security. Large tracts of degraded agricultural land deemed unsuitable for adapted crops, and which may require costly land reclamation practices, can be used to cultivate underutilized crops that are adapted to extreme local conditions.
Geographical information systems / Rain / Water security / Food security / Land suitability / Dryland farming / Resilience / Strategies / Climate change adaptation / Indigenous organisms / Underutilized species / Vigna subterranea / Bambara groundnut / Crop production Record No:H051486
The Nepalese Sunsari Morang Irrigation district is the lifeblood of millions of people in the Koshi River basin. Despite its fundamental importance to food security, little is known about the impacts of climate change on future irrigation demand and grain yields in this region. Here, we examined the impacts of climate change on the irrigation demand and grain yield of wheat crop. Climate change was simulated using Representative Concentration Pathways (RCPs) of 4.5 and 8.5 for three time horizons (2016–2045, 2036–2065, and 2071–2100) in the Agricultural Production Systems Simulator (APSIM). For the field data’s measured period (2018–2020), we showed that farmers applied only 25% of the irrigation water required to achieve the maximum potential grain yield. Actual yields were less than 50% of the potential yields. Projected irrigation water demand is likely to increase for RCP4.5 (3%) but likely to decrease under RCP8.5 (8%) due to the truncated crop duration and lower maturity biomass by the end of the 21st century. However, simulated yields declined by 20%, suggesting that even irrigation will not be enough to mitigate the severe and detrimental effects of climate change on crop production. While our results herald positive implications for irrigation demand in the region, the implications for regional food security may be dire.
Farmers / Extreme weather events / Water requirements / Forecasting / Crop modelling / Irrigation management / Irrigation schemes / Cropping systems / Wheat / Biomass / Crop yield / Water demand / Irrigation water / Climate change Record No:H051485
Located on the south-facing slope of the Himalayas, Nepal receives intense, long-lasting precipitation during the Asian summer monsoon, making Nepal one of the most susceptible countries to flood and landslide hazards in the region. However, sparse gauging and irregular measurement constrain the vulnerability assessments of floods and landslides, which rely highly on the accuracy of precipitation. Therefore, this study evaluates the performance of Satellite-based Precipitation Products (SPPs) in the Himalayas region by comparing different datasets and identifying the best alternative of gauge-based precipitation for hydro-meteorological applications. We compared eight SPPs using statistical metrics and then used the Multi-Criteria Decision-Making (MCDM) technique to rank them. Secondly, we assessed the hydrological utility of SPPs by simulating them through the GR4J hydrological model. We found a high POD (0.60–0.80) for all SPPs except CHIRPS and PERSIANN; however, a high CC (0.20–0.40) only for CHIRPS, IMERG_Final, and CMORPH. Based on MCDM, CMORPH and IMERG_Final rank first and second. While SPPs could not simulate daily discharge (NSE lt; 0.28), they performed better for monthly streamflow (NSE gt; 0.54). Overall, this study recommends CMORPH and IMERG_Final and improves the understanding of data quality to better manage hydrological disasters in the data-sparse Himalayas. This study framework can also be used in other Himalayan regions to systematically rank and identify the most suitable datasets for hydro-meteorological applications.
Temperature / Rain / Discharge / Indicators / Hydrometeorology / Datasets / Hydrological modelling / River basins / Precipitation / Satellite observation Record No:H051444
Orr, A.; Ahmad, B.; Alam, U.; Appadurai, A. N.; Bharucha, Z. P.; Biemans, H.; Bolch, T.; Chaulagain, N. P.; Dhaubanjar, S.; Dimri, A. P.; Dixon, H.; Fowler, H. J.; Gioli, G.; Halvorson, S. J.; Hussain, A.; Jeelani, G.; Kamal, S.; Khalid, I. S.; Liu, S.; Lutz, A.; Mehra, M. K.; Miles, E.; Momblanch, A.; Muccione, V.; Mukherji, Aditi; Mustafa, D.; Najmuddin, O.; Nasimi, M. N.; Nusser, M.; Pandey, V. P.; Parveen, S.; Pellicciotti, F.; Pollino, C.; Potter, E.; Qazizada, M. R.; Ray, S.; Romshoo, S.; Sarkar, S. K.; Sawas, A.; Sen, S.; Shah, A.; Ali Shah, M. Azeem; Shea, J. M.; Sheikh, A. T.; Shrestha, A. B.; Tayal, S.; Tigala, S.; Virk, Z. T.; Wester, P.; Wescoat, J. L. Jr. 2022. Knowledge priorities on climate change and water in the Upper Indus Basin: a horizon scanning exercise to identify the top 100 research questions in social and natural sciences.Earthapos;s Future, 10(4):e2021EF002619. [DOI] More... | Fulltext (2.20 MB)
River systems originating from the Upper Indus Basin (UIB) are dominated by runoff from snow and glacier melt and summer monsoonal rainfall. These water resources are highly stressed as huge populations of people living in this region depend on them, including for agriculture, domestic use, and energy production. Projections suggest that the UIB region will be affected by considerable (yet poorly quantified) changes to the seasonality and composition of runoff in the future, which are likely to have considerable impacts on these supplies. Given how directly and indirectly communities and ecosystems are dependent on these resources and the growing pressure on them due to ever-increasing demands, the impacts of climate change pose considerable adaptation challenges. The strong linkages between hydroclimate, cryosphere, water resources, and human activities within the UIB suggest that a multi- and inter-disciplinary research approach integrating the social and natural/environmental sciences is critical for successful adaptation to ongoing and future hydrological and climate change. Here we use a horizon scanning technique to identify the Top 100 questions related to the most pressing knowledge gaps and research priorities in social and natural sciences on climate change and water in the UIB. These questions are on the margins of current thinking and investigation and are clustered into 14 themes, covering three overarching topics of “governance, policy, and sustainable solutions”, “socioeconomic processes and livelihoods”, and “integrated Earth System processes”. Raising awareness of these cutting-edge knowledge gaps and opportunities will hopefully encourage researchers, funding bodies, practitioners, and policy makers to address them.
Mountains / Glaciers / Ecosystems / Hydroclimatology / Natural disasters / Agriculture / Gender / Socioeconomic aspects / Poverty / Vulnerability / Livelihoods / Sustainability / Policies / Governance / River basins / Water availability / Water management / Water resources / Climate change adaptation Record No:H051443
Increased variability of the water cycle manifested by climate change is a growing global threat to agriculture with strong implications for food and livelihood security. Thus, there is an urgent need for adaptation in agriculture. Agricultural water management (AWM) interventions, interventions for managing water supply and demand, are extensively promoted and implemented as adaptation measures in multiple development programs globally. Studies assessing these adaptation measures overwhelmingly focus on positive impacts, however, there is a concern that these studies may be biased towards well-managed and successful projects and often miss out on reporting negative externalities. These externalities result from coevolutionary dynamics of human-water systems as AWM interventions impact hydrological flows and their use and adoption is shaped by the societal response. We review the documented externalities of AWM interventions and present a conceptual framework classifying negative externalities linked to water and human systems into negative hydrological externalities and unexpected societal feedbacks. We show that these externalities can lead to long term unsustainable and inequitable outcomes. Understanding how the externalities lead to undesirable outcomes demands rigorous modeling of the feedbacks between human and water systems, for which we discuss the key criteria that such models should meet. Based on these criteria, we showcase that differentiated and limited inclusion of key feedbacks in current water modeling approaches (e.g., hydrological models, hydro-economic, and water resource models) is a critical limitation and bottleneck to understanding and predicting negative externalities of AWM interventions. To account for the key feedback, we find Agent Based Modeling (ABM) as the method that has the potential to meet the key criteria. Yet there are gaps that need to be addressed in the context of ABM as a tool to unravel the negative externalities of AWM interventions. We carry out a systemic review of ABM application to agricultural systems, capturing how it is currently being applied and identifying the knowledge gaps that need to be bridged to unravel the negative externalities of AWM interventions. We find that ABM has been extensively used to model agricultural systems and, in many cases, the resulting externalities with unsustainable and inequitable outcomes. However, gaps remain in terms of limited use of integrated surface-groundwater hydrological models, inadequate representation of farmersapos; behavior with heavy reliance on rational choice or simple heuristics and ignoring heterogeneity of farmersapos; characteristics within a population.
Socioeconomic aspects / Farmers / Equity / Sustainability / Irrigation / Surface water / Groundwater / Hydrological modelling / Agent-based models / Water systems / Water management / Agricultural systems Record No:H051439
Ensuring the long-term functionality of community-managed rural water supply systems has been a persistent development challenge. It is well established that the technicalities of keeping the systems going are impacted by complex political, social, financial, and institutional challenges. While the shift to federal, three-tiered governance allocates concurrent responsibility for drinking water management to the local government with federal and provincial governments, water and sanitation user groups continue to shoulder the management of local supply systems voluntarily. All three levels have jurisdiction over water-related services resulting in confusion of roles. This study focuses on the local level, where community management of water and sanitation decentralisation is the key approach in this complex tangle of diverse institutions with different actors managing and governing water. User Groups and their Committees in the Guras Rural Municipality of Dailekh district, Karnali province, in West Nepal, provided the case study, which was analysed using Ostromapos;s well-recognised Eight Principles for Sustainable Governance of Common-Pool Resources. The community-based model, established formally through the Water Resource Act 1992 (2049 BS), is critically analysed in light of the changing socioeconomic context through the intervening years. The results highlight the need for stronger collaboration between the rural municipality and users to achieve good water supplies and the risks of losing access and voice in water management for women and marginalised people when inactive user groups are replaced by private or group interests taking control of the water access.
Policies / Socioeconomic aspects / Drinking water / Water, sanitation and hygiene / Women / Social inclusion / Gender / Water user groups / Water management / Water resources / Rural communities / Collective action / Water supply Record No:H051437
Young people are on the front lines of transforming agriculture and food systems, coping with the social and economic impacts of COVID-19 as well as environmental and climate change effects which are likely to accelerate and intensify during their lifetimes. At the same time, young people across global contexts are increasingly emerging as visible agents of change in food systems, especially through networks that create, transform, and distribute food systems knowledge. This policy and practice review examines the role of youth as actors through food systems knowledge networks. Increasing youth participation in creating sustainable food systems for the future requires policies and practices that support food systems-related knowledge in two ways: (1) democratizing formal education systems; and (2) strengthening horizontal networks of grassroots research and innovation, including through traditional, ecological, local and community knowledge (TELCK). Food systems policies should be developed through dialogue with diverse knowledge systems, experiences, place-based needs, and aspirations of young people to maximize their participation in food systems policy development and evaluation.
Training / Vocational education / Youth employment / Sustainability / Food systems Record No:H051436
We evaluate a large-scale model of agricultural advisory services, known as Krishi Vigyan Kendra (KVK) or Farm Science Centers, introduced by the Government of India to facilitate smallholder adoption of new agricultural technologies. The study first evaluates the impact of frontline demonstrations and capacity-building programs conducted by KVKs and aimed at promoting a new wheat variety (HD2967); it then examines gains in the speed of diffusion at the district level. The study’s second objective is to estimate the spillover effects of KVKs through social networks. The study identifies network beneficiaries based on a ‘‘networks within sample” approach. The study uses a matched difference-indifferences approach and sample of 1496 wheat farmers in Uttar Pradesh, India. The finding shows that frontline demonstrations and capacity-building programs positively impact the adoption of HD-2967. The magnitude of the impacts is larger for KVK beneficiaries, but substantial gains also arise for network beneficiaries. The study underscores the importance of frequently conducting interventions to influence adoption on aggregate at the district level. From a policy perspective, the study offers new insights for strengthening outreach and extension services designed to facilitate the transfer of agricultural knowledge and information, emphasizing frontline demonstrations, capacity-building programs, and spillovers in extending the scope of KVKs.
Wheat / Social networks / Farmers / Smallholders / Capacity development / Training / Advisory services / Information transfer / Agricultural technology Record No:H051434
This study examines the role of caste-based affiliations in the smallholders’ social network interactions for adoption choices. In particular, whether lower-caste, namely Scheduled Castes/Scheduled Tribes, farmers rely more on social networks for information than their counterparts. We further explore whether social network effects are more pronounced when farmers interact within their caste than otherwise. Finally, the study tests whether the effects (intra-caste and inter-caste) vary by caste—SC/ST versus non-SC/ST farmers. The study uses a survey of 478 mustard farmers in Rajasthan, India. Econometric concerns related to unobserved heterogeneity are addressed by employing specifications with village fixed effects and a series of robustness tests. Simultaneity concerns are addressed by analyzing the social network effects in a dynamic adoption framework. Results show that the adoption choices regarding hybrid mustard seeds are more pronounced for the lower-caste farmers than for their counterparts. Findings reveal that social network effects are significant in intra-caste but not in the case of inter-caste. Finally, the result shows that the likelihood of accepting advice in technology adoption is higher when SC/ST farmers interact with non-SC/ST network members than when non-SC/ST farmers interact with SC/ ST network members.
Socioeconomic environment / Caste systems / Farmers / Hybrids / Mustard / Social networks / Agricultural technology Record No:H051433
CONTEXT: On-farm water application in Ethiopia, as in much of Sub-Saharan Africa, is dominated by furrow irrigation, which resulted in inefficient water uses and related economic and environmental problems. A recent project introduced two on-farm water management tools, called wetting front detectors and Chameleon sensors, to some farmers in Koga irrigation scheme and facilitated for other farmers in the quaternary canal, who did not receive the technology, to learn from farmers who installed the tools on their plots.
OBJECTIVES: The objective of this study is to investigate the role of different social ties on information exchanges among farmers when some farmers have the signal on how long to irrigate a field during an irrigation event from on-farm water management tools. The study explored the relative importance of being neighbors, friends, spatial proximity of farms, and project induced pairings.
METHODS: The study used a household survey data from all members of quaternary canals in the project that were in the technology, information, and control groups, as well as detailed network modules on how farmers with plots in the quaternary canal are associated with each other. A fixed effects econometric approach is used to control for time invariant household level and quaternary canal characteristics, while teasing out how the different social ties affect the information flow.
RESULTS AND CONCLUSIONS: The results show that being in purposeful friendships as indicated by knowing each other’s decision on the use of agricultural inputs and its outcome, as well as being spatially proximate as indicated by having farm plots next to each other or usually passing by each other’s plots play a significant role in determining whether information-recipient farmers received information from the technology-recipient farmers as expected. Being relatives or neighbors played a minor role to facilitate information exchanges on how long to irrigate. In addition, ad-hoc pairs of farmers between technology-recipient and information-recipient created through the project within the quaternary canal did not play a significant role above and beyond the existing social ties of friendships and spatial proximity.
SIGNIFICANCE: The findings have implications for effective ways of targeting in future scale up of such technologies as it informs that the roll out of such type of technologies and the extension services around it can better help technology diffusion and learning if they use friends and spatial proximates as anchors of information. That is, at times of over-subscription to such on-farm water management tools, information about the technology and the recommended duration of one irrigation turn can diffuse faster if the limited number of tools are distributed in such a way that friends and spatial proximates have access to a tool, rather than distributing the tools based on being neighbors or relatives.
Indicators / Households / Social aspects / Farmers / Water user groups / Technology / Seeds / Field size / Irrigation schemes / Diffusion of information / Information exchange / On-farm research / Water management Record No:H051432
To enjoy IWMI’s informative newsletter delivered to your inbox simply subscribe here: SIGN UP
Economics and equity
At IWMI, researching underlying economic and social trends helps us understand why people migrate. They also explain the impact of remittances and loss of agricultural labor, as well as consequences of migration on gender roles and food and water security. For instance, communities with higher levels of income inequality, or relative deprivation, may experience greater levels of out-migration compared to consistently low-income communities. In addition, migration changes intra-household gender-labor composition, which can change the access of smallholders to water resources, affecting the functioning of community-based institutions and consequently household and local food security. IWMI also focuses on circular economy, a strategy to recover and reuse waste, to boost food security and understand how interventions can encourage refugee and host communities to retain scarce resources.
This focus area contributes to the following One CGIAR impact areas:
Urban & rural transformation
As agricultural opportunities fluctuate in rural areas, migration, particularly to urban areas, is an adaptation technique to secure incomes and alternative livelihoods. Income generated by migrants is often sent back to family as remittances to support communities at home. At IWMI, we assess linkages between rural and urban areas, as well as the role of agricultural knowledge systems and food and water security. We recognize there are complex push and pull factors such as individual aspirations, economic opportunity, social norms, climate variability and government policies which drive migration and affect rural communities, particularly youth. Our work follows a ‘positive migration’ philosophy, framing migration as an adaptation technique and socio-economic choice (in many cases) rather than a problem to be solved, and focuses on establishing safer, more regular migration by supporting changes to migration governance in sending regions.
This focus area contributes to the following One CGIAR impact areas:
Covid-19 disruption & adaptation
Covid-19 has caused a rupture in migration logistics and exposed inequities in the migration system, yet drivers of movement remain. Government lockdowns and closed borders due to the pandemic curtailed movement for migrants, posing complex problems for migrant hosting and origin countries. There have been significant economic shocks, with a sharp decline in unemployment for migrants and an inability to send money home through remittances to support family. Some migrants face social stigma for returning home without an income, particularly if families relied on loans to support their journeys. Consequences have been severe for informal migrants who lack government protection in their host countries. Migrants, particularly those living in crowded, lower-income neighborhoods, have been experiencing stigmatization related to the spread of Covid-19. We look at the impacts of Covid-19 on migration governance and rural areas across seven countries,development planning in Ghana, migration challenges in Southeast Asia, and community-based disaster management and resilience building in South Africa.
This focus area contributes to the following One CGIAR impact areas:
Water, climate change and agrarian stress
Migration, water and climate stress are inextricably linked to rural development. Water stress and climate variability can act as a driver of fragility, intensifying pre-existing political, social, economic and environmental challenges. Initiatives designed to address migration-related challenges must tackle inequalities and the exclusion of women, youth and marginalized groups; governance opportunities to better manage water and natural resources and technology and innovations to help communities escape socio-ecological precarity and thrive despite climate challenges. IWMI intends to build climate resilience by implementing projects which tackle gender-power inequalities in the face of dynamic, economic-social-ecological challenges. Our work brings together affected communities, institutional stakeholders and social actors to manage water in response to climate variability and agrarian stress, striving to address complex physical and social variables.
This focus area contributes to the following One CGIAR impact areas:
Gender, intersectionality and social inclusion
It is critical to center gender and intersectional identities when unpacking migration phenomena. Gender as a social construct guides social norms and relations, including the decision-making processes and mechanisms leading to migration. We recognize that the intersections between race, age, class, sex, caste and region shape the migrant experience.
IWMI strives to offer transformative approaches and solutions for women, youth and marginalized groups, regarding them as equal partners in our work rather than passive end-users. For example, within communities that experience male out migration, socio-political systems are restructured to make women, youth and other groups active agents in their own agri-food transformation. Migration patterns contribute to the feminization of agriculture, and women may experience a greater burden of responsibility coupled with an increased ability to access and control resources and policies to build sustainable livelihoods. Acknowledging social complexities helps researchers and communities understand migration trends and address structural power imbalances to build a more equitable world.
This focus area contributes to the following One CGIAR impact areas:
Innovation bundles
Farmer-led irrigation development is about much more than installing a pump in a field. It requires access to financing, labor, energy, and input and output markets, so that investments in irrigation translate into sustainable returns. IWMI uses a systemic approach to understand the farming system as well as the factors in the enabling environment that prevent women, men and youth from engaging in and benefitting equitably from farmer-led irrigation. We partner with farmers and the public and private sectors to test contextually relevant innovation bundles that combine irrigation technology such as solar pumps with financing mechanisms like pay-as-you-own or pay-as-you-go, agricultural inputs and agronomic techniques. We also look at ways to improve on-farm water management and nutrient use efficiency and reduce evapotranspiration through digital advances and agricultural extension. We integrate the scaling of innovation bundles into agricultural value chains to enhance the impacts on farmers’ irrigation investments, incomes and livelihoods.
This focus area contributes to the following One CGIAR impact areas:
Gender and social inclusion
The barriers facing women and men in accessing irrigation technologies are not the same. Neither are the benefits. Social, cultural and religious norms influence inter- and intra-household power relations. These, in turn, affect access to resources such as land, credit, information and training. IWMI carries out cross-dimensional analysis of gender and social inclusion in policy, financing, livelihood assets and access, institutional approaches and interventions as well as gender-based technology preferences. For example, we work with farmers, financial institutions and the private sector to address gender-based constraints in credit scoring and enhance women’s purchasing power. But benefitting from farmer-led irrigation does not stop at accessing and adopting technologies; enabling women and resource-poor farmers to participate in input and output markets is equally important to ensure that investments in irrigation result in improved nutrition and economic empowerment. Other ways we enhance gender and social inclusion include tackling agency issues around financial management and literacy, livelihood diversity and social capital as well as access to infrastructure, extension services and market linkages.
This focus area contributes to the following One CGIAR impact areas:
Environmental sustainability
Population pressure and increasing water competition in a changing climate require us to take stock of the availability and use of water across scales. Water availability not only influences farmers’ commercial prospects but also irrigation-related enterprises and agri-businesses. Greater water scarcity could jeopardize irrigation and agricultural markets while excessive water use can lead to declining ecosystems, water quality and soil health. IWMI advises development partners and the public and private sectors on all aspects of water resource availability and use through a variety of advanced modeling and remote-sensing products and tools, including Water Accounting+, solar irrigation mapping and internet of things. These are complemented by multi-criteria analysis to evaluate the potential of irrigation expansion, taking into consideration environmental flows. With our private sector partners, we are leveraging converging technologies, such as sensors on solar pumps that capture usage data, to encourage better resource management and governance.
This focus area contributes to the following One CGIAR impact areas:
Adaptive scaling and partnerships
The ability of farmers to engage in or expand irrigation depends on the prevailing socioeconomic, ecological and political contexts, which are often complex, non-linear and changeable. Overcoming systemic barriers to farmer-led irrigation development while taking advantage of existing opportunities requires scaling processes to be adaptive. This means diverse actors feed off, adapt to, support, cooperate, compete and interact with each other, forming different multi-actor networks and engaging in collective action to undertake various functions in the scaling ecosystem. IWMI works with farmers and public and private sector partners to co-design and pilot contextually relevant innovation bundles and their scaling pathways or strategies, influence policies and accelerate the transition to scale of innovations with demonstrated early impact.
This focus area contributes to the following One CGIAR impact areas:
Financing ecosystem
A lack of affordable credit, particularly for women and resource-poor farmers, is one of the main barriers to expanding farmer-led irrigation in low- and middle-income countries. But credit alone is not enough. Financing for irrigation equipment must be embedded in a wider financing ecosystem that bundles credit with inputs and services, market information and access, and technology such as digital payment. In several countries, irrigation equipment suppliers are stepping in to provide financing directly to farmers. In doing so, they increase their own risk. To address this issue, IWMI works with farmers, private companies, finance institutions and development partners such as the World Bank Group to analyze whether credit-scoring tools are inclusive. We also help to identify gaps in the financing ecosystem and de-risk the private sector from testing innovative end-user financing mechanisms that take into account farming system typologies, financial and social capital and crop seasonality.
This focus area contributes to the following One CGIAR impact areas:
Human capacity development and knowledge exchange
Scaling farmer-led irrigation requires strengthening human capacity and knowledge exchange among all actors and stakeholders involved. IWMI takes an action research approach, working with national and international research institutions, governments, extension agents and public and private organizations to co-develop the scaling ecosystem and strengthen capacity to drive scaling networks and collective action. We support the development of or reinforce national multi-stakeholder dialogues with the aim of sharing scaling experiences and realizing win-win collaboration, interactive learning and capacity development. Other modalities for capacity development include hackathons, innovation research grants for bachelor’s and master’s students, private sector scaling grants and innovation internships with private companies. These all serve to stimulate local and contextually relevant innovation, close the research-private sector divide and enhance job readiness among young professionals.
This focus area contributes to the following One CGIAR impact areas:
This website uses cookies in order to improve the user experience and provide additional functionality. By clicking "Accept" and continuing to use this site you agree to our use of cookies. Read more about our terms of use.