Water, Land and Ecosystems - India https://wle.cgiar.org/country/india en Learning from agri-food innovation pathways in Brazil, India and Kenya https://wle.cgiar.org/learning-agri-food-innovation-pathways-brazil-india-and-kenya <div class="metadata-field field-type"><strong class="label-above">Type</strong>Brief</div><div class="metadata-field field-subject"><strong class="label-above">Subjects</strong><ul class="comma-list"><li>Agricultural production</li><li>Innovation</li><li>Intensification</li></ul></div><div class="metadata-field field-language"><strong class="label-above">Language</strong>en</div><div class="metadata-field field-author"><h2 class="label-above">Authors</h2><ul><li>Commission on Sustainable Agriculture Intensification</li></ul></div><img typeof="foaf:Image" src="https://wle.cgiar.org/sites/default/files/CoSAI_Policy_Brief5.pdf_.jpg" width="212" height="300" alt="" /><div class="metadata-field field-pdf-url"><h2 class="label-above">Download</h2><ul><li><a href="https://cgspace.cgiar.org/rest/rest/bitstreams/f29008f0-abac-433b-aaed-6c0d6c1999c4/retrieve" target="_blank" absolute="1">Download PDF</a></li></ul></div><div class="field-citation metadata-field"><h2 class="label-above">Citation</h2><div class="field-content">Commission on Sustainable Agriculture Intensification. 2021. Learning from agri-food innovation pathways in Brazil, India and Kenya. CoSAI Policy Brief 5. Colombo, Sri Lanka: Commission on Sustainable Agriculture Intensification</div></div><div class="metadata-field field-status"><h2 class="label-above">Accessibility</h2>Open Access</div><div class="metadata-field field-research-theme"><strong class="label-above">Research Themes</strong><ul class="comma-list"><li><a href="/research/themes/enhancing-sustainability-across-agricultural-systems" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Enhancing Sustainability Across Agricultural Systems</a></li><li><a href="/research/themes/enhancing-sustainability-across-agricultural-systems" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Enhancing Sustainability Across Agricultural Systems</a></li></ul></div><div class="metadata-field field-permalink"><h2 class="label-above">Permalink</h2><a href="https://hdl.handle.net/10568/119843">https://hdl.handle.net/10568/119843</a></div><div class="metadata-field field-solution"><strong class="label-above">Solutions</strong><ul class="comma-list"><li><a href="/solutions/productivity" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Productivity</a></li><li><a href="/solutions/productivity" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Productivity</a></li></ul></div> Wed, 15 Jun 2022 11:55:42 +0000 Anonymous 20303 at https://wle.cgiar.org https://wle.cgiar.org/learning-agri-food-innovation-pathways-brazil-india-and-kenya#comments Supporting innovation pathways for sustainable agriculture intensification: Lessons from cross country evidence https://wle.cgiar.org/supporting-innovation-pathways-sustainable-agriculture-intensification-lessons-cross-country <div class="metadata-field field-type"><strong class="label-above">Type</strong>Report</div><div class="metadata-field field-subject"><strong class="label-above">Subjects</strong><ul class="comma-list"><li>Agricultural production</li><li>Innovation</li><li>Intensification</li></ul></div><div class="metadata-field field-language"><strong class="label-above">Language</strong>en</div><div class="metadata-field field-author"><h2 class="label-above">Authors</h2><ul><li>Kohl, R.</li></ul></div><img typeof="foaf:Image" src="https://wle.cgiar.org/sites/default/files/CoSAI_IPS_Global_Synthesis.pdf_.jpg" width="212" height="300" alt="" /><div class="field-abstract"><div class="field-content">This paper takes a first step in filling that gap in terms of assessing whether there is evidence to support proposals about how agricultural innovation pathways should be pursued. We have looked at the recent literature that proposes principles and approaches to achieving large-scale sustainable agriculture intensification (SAI), and disaggregated these all-inclusive approaches into individual components and hypotheses. We then tested six hypotheses through case studies of innovation pathways, trajectories, scaling and other attempts at achieving large-scale SAI. These cases come from three CoSAI-commissioned country studies in Brazil (Chiodi Bachion et al. 2022), India (Khandelwal et al. 2022) and Kenya (Mati et al. 2022), and five studies of the scaling of individual agricultural innovations commissioned by USAID’s Bureau of Resilience and Food Security (Kohl 2016a, 2016b, 2016c; Foy 2017; Foy and Wafula 2016).</div></div><div class="metadata-field field-pdf-url"><h2 class="label-above">Download</h2><ul><li><a href="https://cgspace.cgiar.org/rest/rest/bitstreams/9a082fbd-bd34-48c1-8c9f-5437e793060e/retrieve" target="_blank" absolute="1">Download PDF</a></li></ul></div><div class="field-citation metadata-field"><h2 class="label-above">Citation</h2><div class="field-content">Kohl, R. 2022. Supporting innovation pathways for sustainable agriculture intensification: Lessons from cross country evidence. Colombo, Sri Lanka: Commission on Sustainable Agriculture Intensification. 76p.</div></div><div class="metadata-field field-status"><h2 class="label-above">Accessibility</h2>Open Access</div><div class="metadata-field field-research-theme"><strong class="label-above">Research Themes</strong><ul class="comma-list"><li><a href="/research/themes/enhancing-sustainability-across-agricultural-systems" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Enhancing Sustainability Across Agricultural Systems</a></li><li><a href="/research/themes/enhancing-sustainability-across-agricultural-systems" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Enhancing Sustainability Across Agricultural Systems</a></li></ul></div><div class="metadata-field field-permalink"><h2 class="label-above">Permalink</h2><a href="https://hdl.handle.net/10568/119680">https://hdl.handle.net/10568/119680</a></div><div class="metadata-field field-solution"><strong class="label-above">Solutions</strong><ul class="comma-list"><li><a href="/solutions/productivity" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Productivity</a></li><li><a href="/solutions/productivity" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Productivity</a></li></ul></div> Fri, 27 May 2022 11:55:19 +0000 Anonymous 20285 at https://wle.cgiar.org https://wle.cgiar.org/supporting-innovation-pathways-sustainable-agriculture-intensification-lessons-cross-country#comments Investigating pathways for agricultural innovation at scale: Case studies from India https://wle.cgiar.org/investigating-pathways-agricultural-innovation-scale-case-studies-india <div class="metadata-field field-type"><strong class="label-above">Type</strong>Report</div><div class="metadata-field field-subject"><strong class="label-above">Subjects</strong><ul class="comma-list"><li>Food systems</li><li>Innovation</li><li>Intensification</li><li>Investment</li></ul></div><div class="metadata-field field-language"><strong class="label-above">Language</strong>en</div><div class="metadata-field field-author"><h2 class="label-above">Authors</h2><ul><li>Khandelwal, A.</li><li>Agarwal, N.</li><li>Jain, B.</li><li>Gupta, D.</li><li>John, A.T.</li></ul></div><div class="field-abstract"><div class="field-content">This is one of three country studies on Innovation Pathways in Agri-food Systems, managed by the Commission for Sustainable Agriculture Intensification (CoSAI). The three studies use a common analytical framework to generate lessons on factors leading to successful innovation pathways, to guide future investment.</div></div><div class="metadata-field field-pdf-url"><h2 class="label-above">Download</h2><ul><li><a href="https://cgspace.cgiar.org/rest/rest/bitstreams/e5ee260f-d3ac-492f-9636-c47953eff67f/retrieve" target="_blank" absolute="1">Download PDF</a></li></ul></div><div class="field-citation metadata-field"><h2 class="label-above">Citation</h2><div class="field-content">Khandelwal, A.; Agarwal, N.; Jain, B.; Gupta, D.; John, A.T. 2022. Investigating pathways for agricultural innovation at scale: Case studies from India. Colombo, Sri Lanka: Commission on Sustainable Agriculture Intensification. 64p.</div></div><div class="metadata-field field-status"><h2 class="label-above">Accessibility</h2>Open Access</div><div class="metadata-field field-research-theme"><strong class="label-above">Research Themes</strong><ul class="comma-list"><li><a href="/research/themes/enhancing-sustainability-across-agricultural-systems" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Enhancing Sustainability Across Agricultural Systems</a></li><li><a href="/research/themes/enhancing-sustainability-across-agricultural-systems" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Enhancing Sustainability Across Agricultural Systems</a></li></ul></div><div class="metadata-field field-permalink"><h2 class="label-above">Permalink</h2><a href="https://hdl.handle.net/10568/119440">https://hdl.handle.net/10568/119440</a></div><div class="metadata-field field-solution"><strong class="label-above">Solutions</strong><ul class="comma-list"><li><a href="/solutions/productivity" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Productivity</a></li></ul></div> Mon, 02 May 2022 11:57:01 +0000 Anonymous 20268 at https://wle.cgiar.org https://wle.cgiar.org/investigating-pathways-agricultural-innovation-scale-case-studies-india#comments How agricultural research for development achieves developmental outcomes: learning lessons to inform One CGIAR science and technology policy research https://wle.cgiar.org/how-agricultural-research-development-achieves-developmental-outcomes-learning-lessons-inform-one <div class="metadata-field field-type"><strong class="label-above">Type</strong>Report</div><div class="metadata-field field-language"><strong class="label-above">Language</strong>en</div><div class="metadata-field field-author"><h2 class="label-above">Authors</h2><ul><li>Douthwaite, B.</li><li>Child, K.</li></ul></div><img typeof="foaf:Image" src="https://wle.cgiar.org/sites/default/files/H050909.jpg" width="372" height="530" alt="" /><div class="field-abstract"><div class="field-content">At the end of 2021, CGIAR Research Programs (CRPs) will be replaced by Initiatives housed within One CGIAR. This new modality is intended to achieve higher levels of impact at a faster rate and at reduced cost compared to the CRPs. As One CGIAR begins, there is a unique opportunity to reflect on what has worked in different contexts. In this paper, we provide findings that relate to One CGIAR’s overarching view of how it will achieve positive and measurable impacts, and for agricultural research for development (AR4D) more generally. Specifically, we draw from three related CRP evaluations to identify how different types of AR4D approaches have contributed to successful outcomes. In the final section of the paper, we present our conclusions and provide a list of recommendations for the science and technology policy of One CGIAR and possibly other integrated research for development programs.</div></div><div class="metadata-field field-pdf-url"><h2 class="label-above">Download</h2><ul><li><a href="https://www.iwmi.cgiar.org/Publications/wle/legacy/wle_legacy_series-2.pdf" target="_blank" absolute="1">Download</a></li></ul></div><div class="field-citation metadata-field"><h2 class="label-above">Citation</h2><div class="field-content">Douthwaite, B.; Child, K. 2021. How agricultural research for development achieves developmental outcomes: learning lessons to inform One CGIAR science and technology policy research. Colombo, Sri Lanka: International Water Management Institute (IWMI). CGIAR Research Program on Water, Land and Ecosystems (WLE). 27p. (WLE Legacy Series 2) [doi: https://doi.org/10.5337/2022.201]</div></div><div class="metadata-field field-status"><h2 class="label-above">Accessibility</h2>Open Access</div><div class="metadata-field field-permalink"><h2 class="label-above">Permalink</h2><a href="https://hdl.handle.net/10568/118147">https://hdl.handle.net/10568/118147</a></div><div class="field-altmetric-embed"><div class="altmetric-embed" data-badge-popover="right" data-badge-type="medium-donut" data-doi="https://doi.org/10.5337/2022.201"></div></div> Tue, 22 Feb 2022 12:49:09 +0000 Anonymous 20208 at https://wle.cgiar.org https://wle.cgiar.org/how-agricultural-research-development-achieves-developmental-outcomes-learning-lessons-inform-one#comments Virtual regional dialogue on options to promote more inclusive weather index insurance https://wle.cgiar.org/virtual-regional-dialogue-options-promote-more-inclusive-weather-index-insurance <div class="metadata-field field-type"><strong class="label-above">Type</strong>Report</div><div class="metadata-field field-subject"><strong class="label-above">Subjects</strong><ul class="comma-list"><li>Climate change</li><li>Investment</li><li>Livelihoods</li><li>Smallholders</li></ul></div><div class="metadata-field field-language"><strong class="label-above">Language</strong>en</div><div class="metadata-field field-author"><h2 class="label-above">Authors</h2><ul><li>D.Surie, Mandakini</li><li>Aheeyar, Mohamed</li><li>de Silva, Sanjiv</li><li>Raut, Manita</li></ul></div><img typeof="foaf:Image" src="https://wle.cgiar.org/sites/default/files/Workshop_Summary_Regional_Dialogue_on_WII_Nov_2021.pdf_.jpg" width="232" height="300" alt="" /><div class="field-abstract"><div class="field-content">Over the past decade, countries in South Asia have experienced more frequent and intense extreme weather events – floods and droughts – driven by climate change. In 2021 alone, Bangladesh, India, and Nepal experienced intense monsoon rainfall and floods spurred by an erratic monsoon, even as parts of India and Pakistan experienced intense heatwaves and drought The Intergovernmental Panel on Climate Change’s (IPCC) latest report released in August 2021, suggests that such events are only likely to increase, noting that at 1.5 degrees and 2 degrees Celsius global warming levels, mean precipitation and monsoon extremes are projected to intensify in summer over India and South Asia.</div></div><div class="metadata-field field-pdf-url"><h2 class="label-above">Download</h2><ul><li><a href="https://cgspace.cgiar.org/rest/rest/bitstreams/f34793fb-d83f-4142-b63c-32c650b59565/retrieve" target="_blank" absolute="1">Download PDF</a></li></ul></div><div class="field-citation metadata-field"><h2 class="label-above">Citation</h2><div class="field-content">D.Surie, Mandakini; Aheeyar, Mohamed; de Silva, Sanjiv; Raut, Manita. 2021. Virtual regional dialogue on options to promote more inclusive weather index insurance. Workshop summary report[27-28 October 2021]. 35p.</div></div><div class="metadata-field field-status"><h2 class="label-above">Accessibility</h2>Open Access</div><div class="metadata-field field-research-theme"><strong class="label-above">Research Themes</strong><ul class="comma-list"><li><a href="/research/themes/variability-risks-and-competing-uses" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Variability, Risks and Competing Uses</a></li><li><a href="/research/themes/variability-risks-and-competing-uses" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Variability, Risks and Competing Uses</a></li></ul></div><div class="metadata-field field-permalink"><h2 class="label-above">Permalink</h2><a href="https://hdl.handle.net/10568/117585">https://hdl.handle.net/10568/117585</a></div><div class="metadata-field field-solution"><strong class="label-above">Solutions</strong><ul class="comma-list"><li><a href="/solutions/risk-and-variability" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Risk and variability</a></li><li><a href="/solutions/resilience" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Resilience</a></li><li><a href="/solutions/smallholders" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Smallholders</a></li></ul></div> Wed, 19 Jan 2022 12:37:15 +0000 Anonymous 19989 at https://wle.cgiar.org https://wle.cgiar.org/virtual-regional-dialogue-options-promote-more-inclusive-weather-index-insurance#comments Impact of agricultural water management interventions on upstream–downstream trade-offs in the upper Cauvery catchment, southern India: a modelling study https://wle.cgiar.org/impact-agricultural-water-management-interventions-upstream%E2%80%93downstream-trade-offs-upper-cauvery <div class="metadata-field field-type"><strong class="label-above">Type</strong>Journal Article</div><div class="metadata-field field-subject"><strong class="label-above">Subjects</strong><ul class="comma-list"><li>Groundwater</li><li>Water Management</li><li>Watersheds</li></ul></div><div class="metadata-field field-language"><strong class="label-above">Language</strong>en</div><div class="metadata-field field-author"><h2 class="label-above">Authors</h2><ul><li>Wable, P. S.</li><li>Garg, K. K.</li><li>Nune, R.</li><li>Venkataradha, A.</li><li>Anantha K. H.</li><li>Srinivasan, V.</li><li>Ragab, R.</li><li>Rowan, J.</li><li>Keller, V.</li><li>Majumdar, P.</li><li>Rees, G.</li><li>Singh, R.</li><li>Dixit, S.</li></ul></div><div class="field-abstract"><div class="field-content">The Cauvery basin in southern India is experiencing transboundary issues due to increasing water demand. This study analysed water balance components and the impact of agricultural water management (AWM) interventions in the upper Cauvery catchment of the Cauvery basin. Results showed that the study catchment receives an average of 1280 mm of annual rainfall. Of this, 29% (370 mm) flows downstream, 54% (700 mm) contributes to evapotranspiration (ET) and 17% (215 mm) contributes to groundwater recharge and surface storage. Rainfall varies from 700 to 5400 mm and the Western Ghats (mountain pass) are the main source of freshwater generation. The estimated ET in different catchments ranged from 500 to 900 mm per annum. An increase in the allocation of fresh water supplied by all three reservoirs (Hemavathi, Harangi and KRS) was observed in the canal command areas, from 1450 million cubic metres (MCM) yr‾¹ in 1971–1980 to 3800 MCM yr‾¹ in 2001–2010. AWM interventions harvested 140–160 MCM (13–20 mm) of surface runoff upstream of the upper Cauvery and reduced inflow into the Krishnaraja Sagar reservoir by 2–6%. The study findings are useful for designing and planning suitable water management interventions at basin scale.</div></div><div class="metadata-field field-pdf-url"><h2 class="label-above">Download</h2><ul><li><a href="https://onlinelibrary.wiley.com/doi/full/10.1002/ird.2662" target="_blank" absolute="1">Download</a></li></ul></div><div class="field-citation metadata-field"><h2 class="label-above">Citation</h2><div class="field-content">Wable, P. S.; Garg, K. K.; Nune, R.; Venkataradha, A.; Anantha K. H.; Srinivasan, V.; Ragab, R.; Rowan, J.; Keller, V.; Majumdar, P.; Rees, G.; Singh, R.; Dixit, S. 2021. Impact of agricultural water management interventions on upstream–downstream trade-offs in the upper Cauvery catchment, southern India: a modelling study. Irrigation and Drainage.2021:1–23. DOI:https://doi.org/10.1002/ird.2662</div></div><div class="metadata-field field-status"><h2 class="label-above">Accessibility</h2>Open Access</div><div class="metadata-field field-permalink"><h2 class="label-above">Permalink</h2><a href="https://hdl.handle.net/10568/117358">https://hdl.handle.net/10568/117358</a></div><div class="metadata-field field-solution"><strong class="label-above">Solutions</strong><ul class="comma-list"><li><a href="/solutions/productivity" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Productivity</a></li><li><a href="/solutions/productivity" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Productivity</a></li><li><a href="/solutions/trade-offs-and-synergies" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Trade-offs and synergies</a></li><li><a href="/solutions/risk-and-variability" typeof="skos:Concept" property="rdfs:label skos:prefLabel" datatype="">Risk and variability</a></li></ul></div><div class="field-altmetric-embed"><div class="altmetric-embed" data-badge-popover="right" data-badge-type="medium-donut" data-doi="https://doi.org/10.1002/ird.2662"></div></div> Wed, 05 Jan 2022 12:40:51 +0000 Anonymous 19975 at https://wle.cgiar.org https://wle.cgiar.org/impact-agricultural-water-management-interventions-upstream%E2%80%93downstream-trade-offs-upper-cauvery#comments Transforming livestock productivity through watershed interventions: A case study of Parasai-Sindh watershed in Bundelkhand region of Central India https://wle.cgiar.org/transforming-livestock-productivity-through-watershed-interventions-case-study-parasai-sindh <div class="metadata-field field-type"><strong class="label-above">Type</strong>Journal Article</div><div class="metadata-field field-subject"><strong class="label-above">Subjects</strong><ul class="comma-list"><li>Livestock</li><li>Watersheds</li></ul></div><div class="metadata-field field-language"><strong class="label-above">Language</strong>en</div><div class="metadata-field field-author"><h2 class="label-above">Authors</h2><ul><li>Dev, I.</li><li>Singh, R.</li><li>Garg, K. K.</li><li>Ram, A.</li><li>Singh, D.</li><li>Kumar, N.</li><li>Dhyani, S. K.</li><li>Singh, A.</li><li>Anantha, K. H.</li><li>Akuraju, V.</li><li>Dixit, S.</li><li>Tewari, R. K.</li><li>Dwivedi, R. P.</li><li>Arunachalam, A.</li></ul></div><div class="field-abstract"><div class="field-content">CONTEXT: Global experiences reveal the positive impact of watershed-based interventions in improving livelihoods and environmental security. In the drylands, increasing forage resources and improving livestock productivity is a critical challenge. OBJECTIVES: The overarching aim of this paper is to analyse the impact of watershed-based interventions on livestock population, productivity, fodder resources, and biomass availability. The paper describes the interrelationship between land, water, crop, and livestock and how the gap in forage deficit can be bridged through a range of watershed interventions. METHODS: The study was undertaken in the Parasai-Sindh watershed of Central India between 2011 and 2016. A 300-year-old defunct haveli (a traditional rainwater harvesting structure) was renovated and nine check dams along the drainage line were constructed. Nearly 25,000 running-meters of field bunds were constructed. Large fields (2-3 ha) were divided into relatively smaller plots (0.3–0.5 ha) to reduce runoff velocity. The impact of watershed interventions on water availability, livestock productivity, forage yield, and income was studied through hydrological monitoring, primary household survey and principal component analysis (PCA) biplot and hierarchical clustering. RESULTS AND CONCLUSIONS: The watershed interventions enhanced groundwater availability leading to greater fodder availability, 22% increase in livestock population (ACU) and a 120% increase in milk production over a period of five years. The bovine population recorded a surge of 193% (cattle) and 32% (buffalo) over this period. Mean dry matter (DM, fodder) availability also increased from 10 t/household/year to 16.7 t/household/year owing to improved water availability. Groundnut (rainy season) and wheat (post rainy season) contributed significantly as forage resources. There was an annual forage demand of 5560 t DM for a livestock population of 2175 ACU in 2011 and of 6770 t DM for a livestock population of 2650 ACU in 2016. Annual forage biomass availability was estimated at 4219 t DM in 2011 and 6977 t DM in 2016. There was a deficit of 1341 t DM (24%) in 2011 which turned into a 3% surplus of 210 t DM in 2016 through watershed-based interventions. With increased cropping intensity and milk production, average annual household income increased from US$ 1325 to US$ 2430 over the five-year period. SIGNIFICANCE: This case study clearly illustrates the impact of watershed-based interventions on livestock population, productivity, forage resources, and biomass availability to bridge the gap in forage deficit. Its findings serve as a guide to widely scale up watershed-based interventions for improved water and biomass availability, and livestock productivity in semi-arid and dryland regions.</div></div><div class="field-citation metadata-field"><h2 class="label-above">Citation</h2><div class="field-content">Dev, I.; Singh, R.; Garg, K. K.; Ram, A.; Singh, D.; Kumar, N.; Dhyani, S. K.; Singh, A.; Anantha, K. H.; Akuraju, V.; Dixit, S.; Tewari, R. K.; Dwivedi, R. P.; Arunachalam, A. 2021. Transforming livestock productivity through watershed interventions: A case study of Parasai-Sindh watershed in Bundelkhand region of Central India. Agricultural Systems. 196:103346. doi:https://doi.org/10.1016/j.agsy.2021.103346</div></div><div class="metadata-field field-status"><h2 class="label-above">Accessibility</h2>Limited Access</div><div class="metadata-field field-permalink"><h2 class="label-above">Permalink</h2><a href="https://hdl.handle.net/10568/117344">https://hdl.handle.net/10568/117344</a></div><div class="field-altmetric-embed"><div class="altmetric-embed" data-badge-popover="right" data-badge-type="medium-donut" data-doi="https://doi.org/10.1016/j.agsy.2021.103346"></div></div> Wed, 05 Jan 2022 12:40:51 +0000 Anonymous 19974 at https://wle.cgiar.org https://wle.cgiar.org/transforming-livestock-productivity-through-watershed-interventions-case-study-parasai-sindh#comments Retrieving vegetation biophysical parameters and GPP [Gross Primary Production] using satellite-driven LUE [Light Use Efficiency] model in a national park https://wle.cgiar.org/retrieving-vegetation-biophysical-parameters-and-gpp-gross-primary-production-using-satellite-driven <div class="metadata-field field-type"><strong class="label-above">Type</strong>Journal Article</div><div class="metadata-field field-language"><strong class="label-above">Language</strong>en</div><div class="metadata-field field-author"><h2 class="label-above">Authors</h2><ul><li>Marandi, M.</li><li>Parida, B. R.</li><li>Ghosh, Surajit</li></ul></div><div class="field-abstract"><div class="field-content">The terrestrial biosphere plays an active role in governing the climate system by regulating carbon exchange between the land and the atmosphere. Analysis of vegetation biophysical parameters and gross primary production (GPP) makes it convenient to monitor vegetation&#039;s health. A light use efficiency (LUE) model was employed to estimate daily GPP from satellite-driven data and environmental factors. The LUE model is driven by four major variables, namely normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and moisture for which both satellite-based and ERA5-Land data were applied. In this study, the vegetation health of Dibru Saikhowa National Park (DSNP) in Assam has been analyzed through vegetation biophysical and biochemical parameters (i.e., NDVI, EVI, LAI, and chlorophyll content) using Sentinel-2 data. Leaf area index (LAI) varied between 1 and 5.2, with healthy forests depicted LAI more than 2.5. Daily GPP was estimated for January (winter) and August (monsoon) 2019 for tropical evergreen and deciduous forest types. A comparative analysis of GPP for two seasons has been performed. In January, GPP was found to be 3.6 gC m-2 day-1, while in August, GPP was 5 gC m-2 day-1. The outcome of this study may be constructive to forest planners to manage the National Park so that net carbon sink may be attained in DSNP.</div></div><div class="metadata-field field-pdf-url"><h2 class="label-above">Download</h2><ul><li><a href="https://vlibrary.iwmi.org/pdf/H050796.pdf" target="_blank" absolute="1">Download</a></li></ul></div><div class="field-citation metadata-field"><h2 class="label-above">Citation</h2><div class="field-content">Marandi, M.; Parida, B. R.; Ghosh, Surajit. 2022. Retrieving vegetation biophysical parameters and GPP [Gross Primary Production] using satellite-driven LUE [Light Use Efficiency] model in a national park. Environment, Development and Sustainability, 24(7):9118-9138. [doi: https://doi.org/10.1007/s10668-021-01815-0]</div></div><div class="metadata-field field-status"><h2 class="label-above">Accessibility</h2>Limited Access</div><div class="metadata-field field-permalink"><h2 class="label-above">Permalink</h2><a href="https://hdl.handle.net/10568/116415">https://hdl.handle.net/10568/116415</a></div><div class="field-altmetric-embed"><div class="altmetric-embed" data-badge-popover="right" data-badge-type="medium-donut" data-doi="https://doi.org/10.1007/s10668-021-01815-0"></div></div> Wed, 29 Dec 2021 12:41:38 +0000 Anonymous 19922 at https://wle.cgiar.org https://wle.cgiar.org/retrieving-vegetation-biophysical-parameters-and-gpp-gross-primary-production-using-satellite-driven#comments Floods as agents of vitality: reaffirming human-nature synergies https://wle.cgiar.org/floods-agents-vitality-reaffirming-human-nature-synergies <div class="metadata-field field-type"><strong class="label-above">Type</strong>Brief</div><div class="metadata-field field-language"><strong class="label-above">Language</strong>en</div><div class="metadata-field field-author"><h2 class="label-above">Authors</h2><ul><li>Modak, S.</li><li>Ghosh, Surajit</li></ul></div><img typeof="foaf:Image" src="https://wle.cgiar.org/sites/default/files/H050792_tn_0.jpg" width="372" height="530" alt="" /><div class="metadata-field field-pdf-url"><h2 class="label-above">Download</h2><ul><li><a href="https://firebasestorage.googleapis.com/v0/b/water-science-policy.appspot.com/o/policyBriefs%2Fwsp%2Fflood_agents%2FWSP_10.53014%3AREHQ6535_Floods%20as%20agents.pdf" target="_blank" absolute="1">Download</a></li></ul></div><div class="field-citation metadata-field"><h2 class="label-above">Citation</h2><div class="field-content">Modak, S.; Ghosh, Surajit. 2021. Floods as agents of vitality: reaffirming human-nature synergies. Neuotting, Germany: Water Science Policy (WSP). 7p. (Water Science Policy Brief) [doi: https://doi.org/10.53014/REHQ6535]</div></div><div class="metadata-field field-status"><h2 class="label-above">Accessibility</h2>Open Access</div><div class="metadata-field field-permalink"><h2 class="label-above">Permalink</h2><a href="https://hdl.handle.net/10568/116178">https://hdl.handle.net/10568/116178</a></div><div class="field-altmetric-embed"><div class="altmetric-embed" data-badge-popover="right" data-badge-type="medium-donut" data-doi="https://doi.org/10.53014/REHQ6535"></div></div> Wed, 29 Dec 2021 12:41:38 +0000 Anonymous 19894 at https://wle.cgiar.org https://wle.cgiar.org/floods-agents-vitality-reaffirming-human-nature-synergies#comments High-resolution mapping of forest carbon stock using Object-Based Image Analysis (OBIA) technique https://wle.cgiar.org/high-resolution-mapping-forest-carbon-stock-using-object-based-image-analysis-obia-technique <div class="metadata-field field-type"><strong class="label-above">Type</strong>Journal Article</div><div class="metadata-field field-language"><strong class="label-above">Language</strong>en</div><div class="metadata-field field-author"><h2 class="label-above">Authors</h2><ul><li>Pandey, S. K.</li><li>Chand, N.</li><li>Nandy, S.</li><li>Muminov, A.</li><li>Sharma, A.</li><li>Ghosh, Surajit</li><li>Srinet, R.</li></ul></div><img typeof="foaf:Image" src="https://wle.cgiar.org/sites/default/files/H050799_tn_0.jpg" width="138" height="184" alt="" /><div class="field-abstract"><div class="field-content">This study assessed and mapped the aboveground tree carbon stock using very high-resolution satellite imagery (VHRS)—WorldView-2 in Barkot forest of Uttarakhand, India. The image was pan-sharpened to get the spectrally and spatially good-quality image. High-pass filter technique of pan-sharpening was found to be the best in this study. Object-based image analysis (OBIA) was carried out for image segmentation and classification. Multi-resolution image segmentation yielded 74% accuracy. The segmented image was classified into sal (Shorea robusta), teak (Tectona grandis) and shadow. The classification accuracy was found to be 83%. The relationship between crown projection area (CPA) and carbon was established in the field for both sal and teak trees. Using the relationship between CPA and carbon, the classified CPA map was converted to carbon stock of individual trees. Mean value of carbon stock per tree for sal was found to be 621 kg, whereas for teak it was 703 kg per tree. The study highlighted the utility of OBIA and VHRS imagery for mapping high-resolution carbon stock of forest.</div></div><div class="metadata-field field-pdf-url"><h2 class="label-above">Download</h2><ul><li><a href="https://vlibrary.iwmi.org/pdf/H050799.pdf" target="_blank" absolute="1">Download</a></li></ul></div><div class="field-citation metadata-field"><h2 class="label-above">Citation</h2><div class="field-content">Pandey, S. K.; Chand, N.; Nandy, S.; Muminov, A.; Sharma, A.; Ghosh, Surajit; Srinet, R. 2020. High-resolution mapping of forest carbon stock using Object-Based Image Analysis (OBIA) technique. Journal of the Indian Society of Remote Sensing, 48(6):865-875. [doi: https://doi.org/10.1007/s12524-020-01121-8]</div></div><div class="metadata-field field-status"><h2 class="label-above">Accessibility</h2>Limited Access</div><div class="metadata-field field-permalink"><h2 class="label-above">Permalink</h2><a href="https://hdl.handle.net/10568/116417">https://hdl.handle.net/10568/116417</a></div><div class="field-altmetric-embed"><div class="altmetric-embed" data-badge-popover="right" data-badge-type="medium-donut" data-doi="https://doi.org/10.1007/s12524-020-01121-8"></div></div> Wed, 29 Dec 2021 12:41:38 +0000 Anonymous 19927 at https://wle.cgiar.org https://wle.cgiar.org/high-resolution-mapping-forest-carbon-stock-using-object-based-image-analysis-obia-technique#comments