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Summary

Seven Regional Circulation Models (RCMs), simulating two Representative Concentration Pathways
(i.e., RCPs 4.5 and 8.5), were used as input to the Soil and Water Assessment Tool (SWAT) model
to determine the possible impacts of climate change on the hydrology of the Tana River Basin in
Kenya. Four hydrological characteristics — water yield, groundwater recharge, baseflow and flow
regulation - were determined and mapped throughout the basin for three 30-year time periods:
2020-2049, 2040-2069 and 2070-2099. Results show a spatial heterogeneity with clear differences
between the upper, middle and lower basins. Simulation of both RCPs indicate an increase in mean
annual rainfall for all three time periods, with an earlier onset of rainfall in some model simulations.
The majority of models indicate an increase in extreme climate events under both RCPs. The
response of the basin to the increase in rainfall is not linear, and the simulated increases in water
yield, groundwater recharge and baseflow are much higher (in percentage terms) than the changes
in rainfall. The impacts of climate change will be superimposed onto a basin with complex land use,
built infrastructure and an intricate sociopolitical history. The results have important implications
for the management of both built and natural infrastructure in the basin.

vii






INTRODUCTION

As part of the Water Infrastructure Solutions from Ecosystem Services underpinning Climate
Resilient Policies and Programmes (WISE-UP to Climate) project, two types of ecosystem
services (ESs) have been recognized in relation to the interactions between natural infrastructure
(e.g., forests, wetlands, floodplains) and built water infrastructure (e.g., dams, levees, irrigation
channels): (i) Type 1 ESs are defined as those that affect the technical performance of built
water infrastructure. These are typically characteristics of the hydrological regime that are
affected by natural processes and influence the ability of the built infrastructure to deliver
intended benefits; and (ii) Type 2 ESs are defined as those that are affected by the presence
of built water infrastructure. These are typically services which are modified by the physical
presence of the built water infrastructure or by changes in water/sediment/nutrient fluxes that
are altered as a consequence of the way the infrastructure is designed and operated (McCartney
et al. Forthcoming).

In the component of the study described here, a hydrological model, the Soil and Water
Assessment Tool (SWAT), was used to simulate type 1 ESs in the Tana River Basin, Kenya. The
model was used to quantify and map hydrological processes designated as type 1 ESs because they
influence the technical performance of the five major dams in the basin. The model was configured
and calibrated for the current situation and then used to determine the possible impacts of climate
change (CC) on type 1 ESs.

Many studies have been conducted to simulate the impacts of CC in the basin. Nakaegawa et
al. (2012) produced hydrological cycle projections under CC. Their analysis projected significant
increases in: (i) annual mean precipitation (15% across the entire basin); (ii) evaporation (though
with significant geographical contrasts between the eastern and western parts of the basin); (iii)
total runoff and river discharge (more than 50%); and (iv) soil water storage.

Wamuongo et al. (2014) investigated climatic vulnerability, risks and impacts on food and
livestock production systems in three Tana Delta project sites: Kisuliani, Matoba and Kipini. They
conducted an analysis of long-term climatic data in the Tana River Basin and found a general decline
in rainfall for the period 1961-1990, with a trend toward predominantly increased precipitation
by 2030, 2050 and 2080 compared to current mean rainfall. The spatial plots of rainfall indicate
seasonal differences, but with a high percentage increase over some Tana counties during March
to May under the Representative Concentration Pathway (RCP) 4.5. During the October-December
season, all sites showed increased rainfall, but of a lower intensity compared to the March-May
season.

Leauthaud et al. (2013) noted that, over the past 50 years, five major reservoirs have been
built in the basin, resulting in a 20% decrease in downstream peak flows in May. Droogers et
al. (2009) used projections from nine Global Circulation Models (GCMs) for their study on the
impacts of CC on hydropower generation in the Tana River Basin. These projections produced
mixed results, but, on average (i.e., averaging projections for all nine GCMs for every month), the
percentage increase in monthly rainfall ranged from less than 5% (August and November) to 35%
(September). Although rainfall increased, evapotranspiration also increased, and in conjunction with
higher water demand, resulted in slightly lower inflow into the reservoirs. For instance, average
water demand under the current situation is 684 million cubic meters per year (Mm?3y!); this will
increase to between 781 and 873 Mm?® y! under different CC scenarios. Further analysis showed
that the average hydropower generation will reduce from 2,253 gigawatt hours per year (GWhy!)
to levels between 1,763 and 2,144 GWhy'.



For this study, the latest CC projections were used. The results from seven Regional Circulation
Models (RCMs) were used to provide input to the SWAT model. The simulation results were used
to assess the impacts on hydrological processes/water fluxes that can be considered as type 1 ESs
(i.e., water yield, groundwater recharge, baseflow and flow regulation).

STUDY AREA

The Tana River (Figure 1) is the longest river in Kenya, originating in the Aberdare Mountains,
west of Nyeri, and flowing for over 1,000 km to meet the Indian Ocean in the Ungwana Bay-
Kipini area. The river drains a catchment area of 95,000 km?. The Tana River Basin covers 21%
of the country’s total landmass and is home to 18% of the country’s population. It contributes over
50% of Kenya’s river discharge to the Western Indian Ocean. Ecosystems in the Tana River Basin,
including forests, arid and semiarid lands, mountain vegetation, freshwater and wetlands, marine
and coastal areas, and agroecosystems, provide a range of ecosystem services that are vital for
human well-being. For example, the basin supplies 80% of the drinking water for Kenya’s capital,
Nairobi. The Tana River is also the country’s primary source of hydroelectric power (i.e., 70% of
Kenya’s hydroelectricity and 38% of total electricity supply). Fisheries and agriculture in the basin
provide a major source of food and employment for the estimated 7 million residents that live in
the greater basin area and many more in other parts of the country. One of the basin’s important
ecosystems is the Tana Delta at the coast. This biodiversity hot spot is home to several endangered
species and was designated as a Ramsar site in 2012.

In Kenya, there is recognition at the highest levels of government that climate change is a key
priority and that adaptation and development goals need to complement each other (GoK 2012).
However, a recent political economy analysis of decision making related to the development of
water infrastructure in Kenya found that water governance in the country is highly fragmented with
many players, overlapping mandates and institutional rivalries (Oates and Marani 2017). CC and
the uncertainty associated with it further complicate the planning and management of the country’s
water resources, including those of the Tana River basin.

For this study, the basin was divided into three zones based on the average altitude of each sub-
basin, as delineated by SWAT: (i) Upper zone — average altitude greater than 2,400 m; (ii) Middle
zone — average altitude between 600 m and 2,400 m; and (iii) Lower zone — average altitude below
600 m. ArcGIS was used to calculate the average altitude of each sub-basin. The areas in the Upper,
Middle and Lower zones are 1,514 km?, 29,890 km? and 52,568 km?, respectively® (Figure 1).

! Note: The sum of these areas is 83,972 km?. This is because the area simulated within the SWAT model was to Garsen (the most
downstream flow gauging station) rather than the outlet to the sea.



FIGURE 1. Tana River Basin showing the three zones based on the average altitude of each sub-basin.

Rainfall

Rainfall in the basin varies both temporally and spatially. The average annual rainfall in the basin
for the time period from 1983 to 2011 is approximately 648 mm, but varied from 400 mm (in 2005)
to 1,208 mm (in 1997) (Figure 2[a]). The annual rainfall pattern shows a bimodal distribution. The
two wet seasons are from March to May and October to January (Figure 2[b]). Approximately
91.5% of the rain falls during these two wet seasons. Of this, more than 60% of the rain falls
during the period October-January, while the remaining 40% falls during the period March-May.
Two months — April and November — receive the highest rainfall in each of the rainy seasons.
The average rainfall in the months of April and November are 129 mm and 178 mm, respectively.
Spatially, the upper catchment receives much higher rainfall than the lower regions (Figure 2[c]).
The rainfall ranges from 970 mm to 1,338 mm, from 425 mm to 1,425 mm and from 301 mm to
612 mm for the upper, middle and lower zones, respectively.



FIGURE 2. Rainfall in the Tana River Basin for the baseline (1983-2011) scenario; (a) annual time series, (b)
monthly averages, and (c) spatial distribution.
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Evapotranspiration

The potential evapotranspiration (PET), which is defined as the amount of evaporation that will
occur if sufficient water is available, shows the opposite trend to rainfall. Annual PET is lower in
the upper zone (ranging from 1,200 mm to 1,500 mm) and higher in the lower zone (ranging from
1,700 mm to 1,900 mm) (Figure 3[a]). This is because the average temperature in the lower zone
is higher than that in the upper zone. On average, the highest PET (175 mm) is in March and the
lowest is in June (125 mm) (Figure 3[b]).

The rainfall and PET maps show that there is considerable heterogeneity in the response to
rainfall throughout the basin, with large differences between the elevation zones. PET in the lower
zone is 50% higher than in the upper zone and about 10% higher than in the middle zone.

FIGURE 3. Potential evapotranspiration in the Tana River Basin for the baseline (1983-2011) scenario; (a)
spatial distribution, and (b) average monthly values.
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METHODOLOGY AND DATA

SWAT is a publicly available rainfall-runoff hydrology and water quality model (Arnold et al.
1998). Five categories of data are required as input into the model: topography, soil characteristics,
land use, land use management and climate. Topography is used to delineate and compute the
slope of catchments. Soil characteristics are used to determine infiltration and simulate subsurface
movement of water. Land use and land use management are used to determine water movement and
evapotranspiration. Climate data provide five inputs to the model — precipitation (rain or snow),
temperature (minimum and maximum), solar radiation, relative humidity and wind velocity. The
model simulates vegetation growth, evapotranspiration, hydrology, erosion and sediment movement
along with water quality. River flow data are used to calibrate the model.

Based on the topography, the model divides a watershed into smaller catchments, called sub-
basins. The size of sub-basins depends on the area threshold, which is set by the user. The model
creates smaller spatial units comprising unique combinations of soil, land use and slope, called
Hydrological Response Units (HRUs). Based on the sub-basin delineation, SWAT defines streams
within each sub-basin called reaches. Once the water arrives at a reach, the model uses routing
processes to simulate flow in these reaches. Although SWAT operates at the spatial unit of an HRU
and on a daily time scale, the outputs from the model can be obtained at watershed, sub-basin,
reach and HRU spatial scales, and can be presented in daily, monthly or annual time steps.

The SWAT model was configured and setup for the Tana River Basin using the input data
shown in Table 1. Unfortunately no data were available on land management practices.

The SWAT model can be calibrated using a tool called the SWAT Calibration and Uncertainty
Program (SWAT-CUP) (Abbaspour 2011). SWAT-CUP is a public domain program that enables
calibration, sensitivity and uncertainty analysis of SWAT models. The tool enables users to select from
various calibration uncertainty procedures such as Generalized Likelihood Uncertainty Estimation
(GLUE), Parameter Solution (ParaSol), Sequential Uncertainty Fitting (SUFI-2), Markov Chain
Monte Carlo (MCMC) and Particle Swarm Optimization (PSO). For this study, SUFI-2 was used,

TABLE 1. Categories of data required as input into the SWAT model in the Tana River Basin.

CategoryData

Data source

Spatial resolution

Topography

Digital elevation
mmodel (DEM)

Shuttle Radar Topography Mission (SRTM)

90

Soil characteristics

Digital map of
the soils and
soil properties

Food and Agriculture Organization of the
United Nations (FAO) Harmonized World
Soil Database (http://www.fao.org/soils-
portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/)

30 arc-seconds

Land use Land use map AFRICOVER (http://www.un-spider.org/ 1:200,000
links-and-resources/data-sources/land-cover-
kenya-africover-fao)

Climate Precipitation, National Centers for Environmental 27 x 27 km

temperature, solar Prediction (NCEP) Climate Forecast
radiation, relative SystemReanalysis (CFSR)
humidity and (http://rda.ucar.edu/pub/cfsr.html)
wind velocity
Hydrology River discharge The Water Resources Management Agency

from four flow
gauging stations

(WRMA), Kenya




as it is the most commonly used procedure for SWAT model calibration and has been successfully
used in a number of studies around the world (e.g., Abbaspour et al. 2007; Sood et al. 2013). Two
parameters are used to quantify uncertainty in the model: P-factor and R-factor. The P-factor indicates
the percentage of the observed data that falls within 95% of prediction uncertainty (95PPU), and
the R-factor is the average thickness of the 95SPPU band divided by the standard deviation of the
observed data. Two performance indicators — Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe
1970) and Coefficient of Determination (R?) — were used to evaluate model simulations.

Once the SWAT model was calibrated, it was run from 1983 to 2011 to develop a current
(or baseline) scenario. Hydrological characteristics that are critical to the functioning and hence
performance of dams (i.e., built infrastructure) relate to the quantity and temporal distribution
of flow into reservoirs. Both factors are influenced by natural infrastructure — land cover, land
management and land-use practices. Effectively, the ‘performance’ of natural infrastructure
influences the performance of built infrastructure. Hydrological parameters, which can be used to
categorize the services provided by natural infrastructure, are water yield, groundwater recharge,
baseflow and flow regulation (Table 2).

Multiple CC scenarios were run using the SWAT model to determine the impact of CC on Type
1 ESs of the Tana River Basin. CC scenarios are developed using GCMs, but these have coarse
spatial resolution and fail to consider local conditions. Thus, for regional studies, GCMs may not
provide realistic CC outcomes. This is overcome by downscaling and/or bias correction based on
regional information. Downscaling can be dynamic, wherein a nested climate model, Regional
Climate Model (RCM), is used, or it can be statistical, whereby empirical relationships between
simulated and observed data are used.

In this study, seven RCMs of the Coordinated Regional Climate Downscaling Experiment
(CORDEX) (Giorgi and Gutowski 2016) were used. Data for these RCMs and for each of two
RCPs?, i.e., RCP 4.5 and RCP 8.5, were used to create 14 CC ‘scenarios’ (Table 3).

TABLE 2. Type 1 ecosystem services: Hydrological characteristics that are influenced by land use management
and practices (i.e., natural infrastructure).

Quantity of flow

Water yield This represents the total water produced in a catchment that flows out of it and is not evaporated.
This depends on both meteorological (i.e., rainfall, temperature, etc.) and physical (i.e., topography,
land use and land cover) characteristics of the catchment. Water yield, along with flow entering
the catchment, represents the total ‘useable’ water available in the catchment.

Groundwater This is the amount of water that percolates past the root zone and recharges groundwater.
recharge Ultimately, this returns to the stream as baseflow.
Baseflow This represents the contribution of groundwater to the stream. During storm events, only a small

portion of streamflow is made up of baseflow. However, on other days, all the streamflow is
made up of baseflow. The baseflow depends on the aquifer properties and the amount of
groundwater recharge that takes place.

Timing of flow

Flow regulation This is the ratio of dry-season flow to total flow in a stream. Upstream of built dams, dry-season
flow is made up of baseflow and water released from natural water storage (e.g., lakes, ponds
and aquifers).

2Representative Concentration Pathways (RCPs) are greenhouse gas (GHG) concentration trajectories adopted by the Intergovernmental
Panel on Climate Change (IPCC) for its Fifth Assessment Report (ARS) in 2014 (van Vuuren et al. 2011). RCP 4.5 assumes that the
GHG emissions will increase till about 2040 and then decline. However, RCP 8.5 assumes that the GHG emissions will continue to rise
throughout the century and represents the worst case scenario. RCP 4.5 and RCP 8.5 correspond to 4.5 watts (W)/m? and 8.5 W/m?,
respectively, of increases in radiative forcing by the year 2100 as compared to pre-industrial values.



The model was run for the period 2011-2099, and data were analyzed for the three periods

2020-2049, 2040-2069 and 2070-2099.

TABLE 3. Climate change scenarios used in this study for the Tana River Basin.

Institution Driving GCM RCM RCP Scenario
name”

Canadian Centre CCCma-CanESM2 CCCma-CanRCM4 RCP 4.5 TCM1-45

for Climate

Modelling and CCCma-CanESM2 CCCma-CanRCM4 RCP 8.5 TCM1-85

Analysis (CCCma)

Climate Limited- CNRM-CERFACS-CNRM-CM5 CLMcom-CCLM4-8-17 RCP 4.5 TCM2-45

area Modelling

Community CNRM-CERFACS-CNRM-CM5  CLMcom-CCLM4-8-17 RCP 8.5 TCM2-85
ICHEC-EC-EARTH CLMcom-CCLM4-8-17 RCP 4.5 TCM3-45
ICHEC-EC-EARTH CLMcom-CCLM4-8-17 RCP 8.5 TCM3-85
MOHC-HadGEM2-ES CLMcom-CCLM4-8-17 RCP 4.5 TCM4-45
MOHC-HadGEM2-ES CLMcom-CCLM4-8-17 RCP 8.5 TCM4-85
MPI-M-MPI-ESM-LR CLMcom-CCLM4-8-17 RCP 4.5 TCMS5-45
MPI-M-MPI-ESM-LR CLMcom-CCLM4-8-17 RCP 8.5 TCMS5-85

Royal Netherlands ICHEC-EC-EARTH KNMI-RACMO22T RCP 4.5 TCM6-45

Meteorological

Institute ICHEC-EC-EARTH KNMI-RACMO22T RCP85  TCM6-85

Swedish IPSL-IPSL-CM5A-MR SMHI-RCA4 RCP 4.5 TCM7-45

Meteorological
IPSL-IPSL-CM5A-MR SMHI-RCA4 RCP 8.5 TCM7-85

and Hydrological
Institute

Note: * TCM - Tana Climate Model.

SWAT Setup

The model was setup using the inputs as described above. An area threshold of 20.0 km? was used
to define the sub-basin and HRU delineation process. This led to the creation of 368 sub-basins.

Land use, as shown in Figure 4, was used (http://www.waterbase.org/download data.html). The
two largest land covers in the watershed are grass rangeland and honey mesquite (a species of
small to medium-sized thorny shrub or tree in the legume family), which cover about 37% and
21% of the watershed, respectively. Forest cover (evergreen broadleaf forest, mixed forest and
forest-deciduous) is about 6% and agriculture is about 10.5% of the total catchment area (Table 4).



FIGURE 4. Land use in the Tana River Basin.
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TABLE 4. Percentages (of the total area) of land use in the Tana River Basin.

Land use Percentage of the basin Land use Percentage of the basin
Barren 0.13 Rice 0.34
Coffee 2.02 Range-bush 6.55
Corn 5.23 Range-grasses 36.94
Eucalyptus 0.14 Savanna 2.47
Evergreen broadleaf forest 1.18 Shrubland 0.08
Mixed forest 2.21 Arid rangeland 0.18
Forest-deciduous 2.72 Tea 1.02
Grassland 1.89 Residential 0.04
Honey mesquite 21.43 Water 0.28
Oak 1.65 Herbaceous wetland 1.64
Orange 0.13 Wetlands-forested 0.01
Orchard 0.19 Wetlands-mixed 1.05
Pine 0.27 Agricultural land-generic 9.53
Pineapple 0.09 Agricultural land-irrigated 0.61

Similarly, soil data used in the model are shown in Figure 5 (FAO and UNESCO 1995). More
than 50% of the watershed has soil type ‘Lf17-2ab-737’ (i.e., sandy/clay/loam) (Table 5).

Five categories of slope were selected. According to a topographic analysis conducted using
a DEM, it was identified that almost 59% of the basin had a slope less than 2%, and 22% of the
basin had a slope between 2 and 5% (Figure 6; Table 6).



FIGURE 5. Soil types in the Tana River Basin.
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TABLE 5. Texture and percentage (of total basin area) of different soil types in the Tana River Basin.

Soil name Texture Percentage of basin
Bc14-2bc-440 Loam 4.07
Bk31-2a-473 Loam 0.26
Fo48-2ab-42 Sandy-Clay-Loam 1.42

Fr7-2a-580 Sandy-Clay-Loam 0.8

Gh7-2a-57 Loam 1.24
I-c-99 Loam 0.27
I-R-bc-76 Loam 3.98
1-U-c-665 Sandy-Clay-Loam 0.31
Lf17-2ab-737 Sandy-Clay-Loam 51.42
L{86-2a-774 Sandy-Clay-Loam 4.16
Nel2-2c¢-155 Loam 1.51
Ne30-2ab-824 Sandy-Clay-Loam 5.01
Ne31-2ab-825 Loam 1.81
Nh2-2¢-848 Loam 2.98
Qc37-1a-881 Sandy-Loam 0.38
Qf35-1-2b-913 Sandy-Loam 0.54
Re59-a-247 Loam 1.83
Tm10-2bc-941 Loam 0.09
Tm9-2c-948 Loam 3.46
Vp49-3a-966 Clay 3.06
X7-2ab-987 Loam 8.25
Yh19-2a-356 Loam 3.15

TABLE 6. Percentage of the watershed having each of
the slope categories.

Slope (%) Percentage of the watershed
0-2 58.9
2-5 21.9
5-10 9.7
10-15 3.6
> 15 5.9
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Thresholds of 20%, 20% and 30% were used for land use, soil and slope, respectively, to create
HRUs. The selection of thresholds is subjective and depends on the level of detail required and the
computational limitations. Lower values of threshold lead to a higher number of HRUs, but increase
the model processing time. The thresholds selected in this study led to the creation of 1,047 HRUs.

Calibration and Validation

Figure 7 shows the spatial location of the four calibration and validation flow stations used in the
setup of the SWAT model. These stations were selected based on the quality of the respective flow
data. On visual inspection, the observed flow at these stations showed clear response to rainfall
events, indicating good quality data. The daily flow data from these stations were used to adjust the
SWAT parameters, and Table 7 shows the performance indicators for calibration and validation. The
calibration of the model was done starting from the most upstream station and moving downstream
(keeping the parameters upstream of the calibrated station unchanged).

FIGURE 7. Calibration and validation stations used for the setup of the SWAT model in the Tana River Basin.

@ Flow gauge
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The NSE performance indicator ranged from 0.34 to 0.79. Three out of four stations had NSE
values greater than or equal to 50%. For validation, the NSE value ranges from 0.27 to 0.5 for
daily streamflow. Figure 8 shows the graphs of observed and simulated flow for these stations for
calibration and validation. Visual inspection indicates a reasonable match between observed and
simulated flow. It is also evident from the graphs that there are gaps in the observed data, which
made it difficult to calibrate the model well. However, overall, the simulation of hydrology by the
model was reasonable.
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FIGURE 8. Calibration and validation results for the Tana River Basin.
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RESULTS AND DISCUSSION

Since the aim of the SWAT modelling was to understand the impact of climate change on the
hydrology of the Tana River Basin and specifically on type 1 ESs, we investigated four characteristics
that influence the performance of built infrastructure in the basin: water yield, groundwater recharge,
baseflow and flow regulation (Table 2). The spatial variation of the average annual values (1983-
2011) for these hydrological variables are shown in Figure 9 and summarized in Table 8.

FIGURE 9. Spatial distribution of the annual average hydrological outputs from the SWAT model for the Tana
River Basin for the baseline scenario. (a) water yield, (b) groundwater recharge, (c) baseflow, and (d) flow
regulation.
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As shown in Figures 2(a) and 3(c), rainfall is low and the evaporative water demand is higher
in the lower basin than at higher elevations. The average annual water yield in the lower zone is
only 4% of the annual rainfall. This compares to 37% in the upper zone and 23% in the middle
zone. Another reason for higher water yield in the upper zone is topography; the greater slope in
the upper zone results in higher runoff than in the middle and lower zones. Annual groundwater
recharge in the upper zone is about 20% of the annual rainfall, and 19% for the middle zone and
just 6% in the lower zone. The contribution of baseflow to water yield is 16% in the upper zone
and 20% in both the middle and lower zones.

15



TABLE 8. Annual averages of hydrological outputs in the three zones of the Tana River Basin for the baseline
scenario.

Tana zone Rainfall PET Water yield Groundwater Baseflow Flow
(mm) (mm) (mm) recharge (mm) regulation
(mm) (%)
Upper 1,289 1,249 498 257 81 31
Middle 896 1,645 208 172 41 35
Lower 476 1,828 18 30 4 33
Average 640 1,752 94 85 19 34

Climate Change

Results from the ensemble of climate change models, for each of the RCPs (RCP 4.5 and RCP
8.5), are presented below.

Rainfall

The average monthly rainfall was plotted for all the model/RCP scenarios (Table 3) for the three
time periods 2020-2049, 2040-2069 and 2070-2099 (Figure 10). All the simulations, except for
that derived from TCM-4, show a bi-modular trend for rainfall. For the TCM-1 and TCM-7
simulations, there is a shift in the peak to a month earlier during the March-May wet season
for all three time periods. Similarly, there is a shift of a month for the October-January wet
season for the 2040-2069 and 2070-2099 time periods. There is no such shift in the other model
simulations. Since both the TCM-4 simulations produced rainfall trends that are very different to
either the existing regime or the other model results, they seem to be outliers and were discarded
from further analyses.

The experience of the National Meteorological Department (NMD) is that the model used in
the TCM-1 simulations (i.e., CCCma-CanESM?2) best simulates the current climate of the country
(Dr. Samuel Marigi, Kenya Meteorological Department (KMD), pers. comm., October 6, 2016).

The results of the individual model simulations are summarized as box plots (Figures 11, 12,
13 and 14). The bottom and the top whiskers show the minimum and maximum value, respectively,
in the period of simulation. The lower and upper ends of the boxes depict the 25 percentile and
75 percentile values, respectively. The horizontal line within the box represents the 50 percentile
(median) value.

Figure 11 presents an inter-year comparison of annual rainfall for the three time periods, two
RCPs and six model simulations. The results indicate that there is considerable variation between
the different models for both RCPs. However, broadly, the results indicate that both mean annual
rainfall and inter-annual variability increase for both RCPs with greater increases in RCP 8.5.
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FIGURE 10. Time series of rainfall for 14 CC scenarios for three time periods: (a) 2020-2049, (b) 2040-2069,
and (c) 2070-2099.
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FIGURE 11. Rainfall as annual average for an inter-annual comparison for the three time periods and two RCPs.
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Table 9 presents the average rainfall across the ensemble of models for the three elevation
zones for both RCPs.

TABLE 9. Rainfall (mm) averaged across the ensemble of models for each of the RCPs (number in brackets
represents the percentage change relative to the baseline).

Scenario RCP 4.5 RCP 8.5
Elevation zone Elevation zone
Upper Middle Lower Mean Upper Middle Lower Mean
Baseline 1,289 896 476 640 1,289 896 476 640
2020-2049 1,367 972 535 706 1,412 998 541 719
(6.1) (8.5) (12.6) (10.3) 9.5) (11.3) (13.7) (12.4)
2040-2069 1,391 999 563 733 1,414 1,020 562 740
(7.9) (11.5) (18.3) (14.5) 9.7) (13.8) (18.2) (15.7)
2070-2099 1,438 1,072 590 777 1,747 1,246 671 895
(11.6) (19.6) (24.1) (21.4) (35.5) (39.0) (40.0) (39.8)

For RCPs 4.5 and 8.5, average monthly rainfall across the ensemble of models was compared.
These results indicate, broadly, an increase in mean monthly rainfall in most months (including in
the dry season), and a slight decrease in April and May in some cases due to the shift in the start
of the rainy season (Figure 12).

Basin Flow

Figure 13 presents mean annual flow at Garissa for the three time periods and two RCPs. The
impact of increased rainfall can be seen in the flow generated in the basin at Garissa. The flow
generated in all CC scenarios is higher than the average flow generated in the baseline scenario.
Annual average flow for the baseline scenario is 6.0 km?, and the annual values range from 2.1
km? (in 2009) to 18.0 km? (in 1998). Table 10 presents the average annual flows at Garissa for the
three time periods for each of the RCPs.

Figure 14 presents the simulated monthly basin outflow for both RCPs (i.e., averaged across
the ensemble of models). In general, compared to the baseline scenario, the average flow is higher
in all the months in all three time periods with the largest increase in RCP 8.5. Furthermore, the
extreme values clearly indicate that, with some exception in the 2020-2049 period, there is greater
variability of flow under RCP 8.5 than RCP 4.5. The results also reflect the gradual shift to the
earlier onset of rainfall (see above) with peak flows moving to earlier in the year.
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FIGURE 12. Simulated monthly rainfall (averaged across the ensemble of models) for the three time periods
and the two RCPs.
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FIGURE 13. Basin outflow (Garissa) as annual average for an inter-year comparison for the three time periods
and the two RCPs.
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TABLE 10. Average annual flow (km®) at Garissa averaged across the ensemble of models for each of the
RCPs (number in brackets represents the percentage change relative to the baseline scenario).

Scenario RCP 4.5 RCP 8.5
Baseline 6.0 6.0
2020-2049 9.4 (57) 10.2 (70)
2040-2069 10.0 (67) 10.5 (75)
2070-2099 11.4 (90) 16.1 (168)

FIGURE 14. Monthly variation in outflow from the basin (averaged across the ensemble of models) for the
three time periods for both RCPs.
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Impact on Floods

Analyses of the simulated daily data derived from the TCM1-45 and TCM1-85 model runs were
conducted to ascertain possible impacts on flood flows at Garissa. These model runs were selected
because, as noted previously, the CCCma-CanESM2 model is believed to provide the best model
simulations in Kenya according to the KMD.

Flood frequency analyses entail estimating the peak discharge that is likely to be equaled or
exceeded, on average, once in a specified period, T years. A statistical distribution is fitted to the
series of annual maximum flows, ranked by the magnitude of flow. In this study, the analyses were
conducted using the maximum daily discharges derived from the SWAT model for each of the two
RCPs, in each of the three time periods. In all the cases, the Pearson type III distribution was fitted
using the method of probability weighted moments (Shaw 1984). In all the cases, the curves were
extrapolated to T=100 years. Since no allowance was made for anthropogenic impacts on flows
in the climate change analyses, the flood flows generated from the SWAT model were compared
with the situation in the basin prior to dam construction.

Results are presented in Table 11 for all three time periods, and in Figure 15 for the time
periods 2020-2049 and 2070-2099. These results indicate that, in comparison to the baseline
scenario, flood flows increase significantly for both RCPs, with the magnitude of increase rising
over time. Interestingly, the simulation for RCP 4.5 indicates larger magnitude floods than RCP
8.5 for all return periods, with the exception of the low return period (i.e., T less than 10 years)
in the 2040-2069 and 2070-2099 time periods. This highlights the complexity of possible changes
occurring as a consequence of CC.

TABLE 11. Comparison of flood frequency curves for the baseline (pre-dam) scenario and for RCP 4.5 and
RCP 8.5 (m®¥s™).

Return Baseline RCP 4.5 RCP 8.5
period (pre-dam)
(years) scenario  2020-2049  2040-2069  2070-2099 2020-2049  2040-2069  2070-2099
1.3 419 1,508 1,715 1,957 1,454 1,808 2,709
1.5 510 1,795 2,005 2,350 1,713 2,117 3,028
2 658 2,234 2,442 2,910 2,103 2,548 3,452
5 1,022 3,216 3,401 4,027 2,953 3,380 4,202
10 1,256 3,797 3,959 4,623 3,447 3,808 4,554
25 1,541 4,473 4,600 5,268 4,012 4,260 4,899
50 1,747 4,940 5,040 5,690 4,400 4,549 5,107
100 1,946 5,383 5,454 6,072 4,763 4,807 5,284
Mean 726 2,348 2,538 2,931 2,185 2,537 3,377
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FIGURE 15. Flood flow versus return period for the two RCPs and three time periods.
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Type 1 Ecosystem Services

Table 12 presents the overall impact of climate change on rainfall and the hydrological variables,
comprising type 1 ecosystem services, across the three elevation zones for both RCP 4.5 and RCP
8.5. Annex 1 presents the results for individual model simulations.

Among the four variables considered, type 1 ESs (water yield, groundwater recharge and
baseflow) all increase significantly under both RCPs across all three elevation zones. The increases
are greater for RCP 8.5 than for RCP 4.5. For instance, for the entire basin, increases in water
yield, groundwater recharge and baseflow under RCP 4.5 for the period 2070-2099 compared to the
baseline scenario are 11%, 95% and 228%, respectively. For the same period, respective increases
for these three variables under RCP 8.5 are 197%, 160%, and 392%. In contrast to these three
variables, flow regulation decreases throughout the basin in the majority of the simulations. This
is a reflection of the increased variability in flow under possible future climate change.
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CONCLUSION

A hydrological model, SWAT, was setup for the Tana River Basin in Kenya to generate outputs
from an ensemble of climate models under RCP 4.5 and RCP 8.5. Results derived for three future
time periods, 2020-2049, 2040-2069 and 2070-2099, were compared to a 1983-2011 baseline.

The results confirm the findings of others that there will likely be a reversal of recent historic
trends of declining rainfall. Rather, rainfall is projected to increase across the basin over the
remainder of the twenty-first century, with greater increases (up to 40% by the end of the century)
under RCP 8.5 than RCP 4.5. The results also indicate an earlier onset of rainfall for both the long
and the short rainy season under both RCPs.

A consequence of the increased rainfall is disproportionate increases in flow from the basin.
The mean annual flow at Garissa increases significantly by 90% under RCP 4.5 and more than
doubles under RCP 8.5 by the end of the twenty-first century. Flood flows and variability are also
projected to increase significantly under both RCPs.

The modeling results indicate significant changes in type 1 ecosystem services. The impact
of climate change on water yield, groundwater recharge, base flow and flow regulation were
estimated. The first three variables (water yield, groundwater recharge and baseflow) progressively
increase under both RCPs, but with greater increases under RCP 8.5 than 4.5. In contrast, natural
flow regulation reduces across most of the basin in most future time periods, resulting in increased
seasonal variability in flows and larger floods. The reductions in flow regulation are comparable
under both RCPs.

Increases in rainfall and flow broadly indicate an improved water resource situation in the future,
with opportunities for increasing benefits from built infrastructure (i.e., hydropower generation as
well as irrigation and water supply diversions). However, declining natural flow regulation, increased
variability, and significant increases in the frequency and magnitude of floods pose a significant
risk that threatens to undermine development opportunities. Water resources management is likely
to be more difficult than under historic climatic conditions. To build resilience, water resource
managers need to adapt to changing conditions. Though working with natural processes is currently
a challenge, better understanding of the role of natural infrastructure and explicit integration of
type 1 ecosystem service will likely be a prerequisite for sustainable water resources management
in the future.
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