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Abstract 
The report provides a methodology protocol for measuring temporal and spatial changes 
in water quantity and quality using drone imagery. The procedure is informed by the need 
for effective and sustainable water resource use to enhance water productivity under 
climate change. It is based on a literature review that allows the identification of 
appropriate processes, materials, and procedures for water monitoring, including mapping 
spatial and temporal dynamics of reservoirs, measurement of water quality parameters, 
and flood mapping of irrigation canals. 
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1 INTRODUCTION 

Growing populations in developing countries rely on freshwater stored in small waterbodies 

for agricultural, domestic, mining and industrial use (Bangira et al., 2019; Sibanda et al., 2021). 

These water resources, especially those in Africa, are highly susceptible to climate variations 

and pollution and are generally insufficient to withstand these perturbations. Climate change is 

likely to affect the water cycle processes (e.g. precipitation, evaporation, runoff etc.) and water 

demand. Warmer temperatures increase the rate of evaporation of water into the atmosphere, 

in effect increasing the atmosphere's capacity to "hold" water. Increased evaporation may dry 

out some areas and fall as excess precipitation in other areas (Kundzewicz et al., 2018). Heavy 

downpours can increase the runoff into rivers and lakes, washing sediment, nutrients, 

pollutants, trash, animal waste, and other materials into water supplies, making them unusable, 

unsafe, or in need of water treatment (Tebbs et al., 2020). 

Furthermore, the increasing impacts of anthropogenic activities on water resources negatively 

affect the quality and quantity of water stored in reservoirs. The impacts of climate change on 

water availability and quality will affect many sectors, including energy production, 

infrastructure, human health, agriculture, and ecosystems. Hence, there is a growing need to 

develop integrated, cheap and robust water quality monitoring approaches as a yardstick for 

achieving food and water security under climate change (Bangira et al., 2019). The use of 

unmanned aerial vehicles (UAVs) at catchment or waterbody scale allows accessing real-time 

information on the water resource and monitoring quality and quantity at different seasons. The 

specific objectives of the report are: 

i. to provide a detailed methodology for assessing the feasibility of using drones in 

detecting and mapping flooding or leaks along irrigation canals and dams, and 

ii. to provide a detailed methodology for assessing the spatial and temporal resolution 

capabilities of drones in detecting and mapping the levels and quality of water in 

irrigation canals and dams.  

2 BACKGROUND AND LITERATURE REVIEW 

This report builds on a systematic review of the available models for remotely sensed drone 

technologies in surface water resources monitoring and assessment (Sibanda et al., 2021). The 

review provided an in-depth systematic assessment of the literature on progress, challenges, 
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and opportunities in utilising UAVs in mapping and monitoring surface water resources for 

improving food production in smallholder farms in the global south. It highlighted the available 

bands and spatial and spectral resolutions of sensors appropriate for monitoring water resources 

to promote food and water security. Most importantly, the review listed the available models 

that have been applied in monitoring surface water quality and quantity using remotely sensed 

images acquired by drones. It is worth noting that the review also found that the most widely 

used sections of the electromagnetic spectrum in detecting specific water quality parameters 

were the visible section (blue and green) and the NIR wavebands. Finally, the review evaluated 

progress, gaps, and challenges faced by the global south in utilising drone technologies for 

mapping and monitoring the quality and quantity of surface water bodies.  

Several inversion algorithms based on empirical, semi-empirical, analytical and semi-

analytical methods were identified in the review for estimating water quality parameters using 

drone imagery (Kapalanga et al., 2021; Kibena et al., 2014; Sibanda et al., 2021). Empirical 

algorithms, which are the most popularly used, are based on a statistical relationship, that is, 

regression (parametric and non-parametric) analysis, between the spectral (reflectance or 

radiance) data properties of optimal bands and measured water quality parameters (e.g., Chl-a, 

total suspended solids (TSS), chemical oxygen demand (COD), biological oxygen demand 

(BOD), Secchi disk depth (ZSD), temperature, nutrients etc.) (Gholizadeh et al., 2016; 

Gitelson, 1992). Generally, the information about the spectral characteristics of the measured 

water quality parameter is used to assist in the selection of suitable wavelength(s) or best model 

in the empirical approach. On the other side, the analytical models use bio-optical and radiation 

transmission models to simulate the dispersion of light in the atmosphere and water bodies to 

describe the relationship between water quality components and the radiance or reflection 

spectrum of off-water radiation (Gholizadeh et al., 2016). The semi-analytical and semi-

empirical models combine the empirical and the analytical models. The accuracy of these 

models varies, depending on the spectral characteristics of bands used, atmospheric correction 

algorithms applied, spatial resolution and concentration of parameters (Tebbs et al., 2020). 

Generally, the models use the earth's surface's visible, red, and infrared bands to estimate water 

quality parameters.  

The review's findings underscored the use of bio-optical analytical algorithms in water quality 

monitoring (Sibanda et al., 2021). The composition of the water body and radiation 

transmission procedure is rather complex since many factors need to be measured for the model 
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to be established, such as the inherent optical characteristics of water, adjacent characteristics, 

and water quality variables (Salama et al., 2012). In addition, the spectral resolution of most 

satellite sensors and those measured near the ground are inconsistent, which leads to some 

difficulties in model research. However, the review has positively pointed towards using 

empirical algorithms, which are simple and easy to operate. It can be refined by selecting more 

precise spectral channels to increase the accuracy of water quality parameters retrieval 

(Kapalanga et al., 2021). 
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3 PROPOSED METHODOLOGY 

3.1 Data collection 

3.1.1 Water quality parameters for irrigation  

Water quality is a general descriptor of water's physical, chemical, thermal, and/or biological 

characteristics (Modiegi et al., 2020; Ritchie et al., 2003). Defining a single water quality 

parameter to meet all uses and user needs is difficult. The quality of irrigation water that is 

generally considered acceptable should be clear, odourless, and foamless with minimum 

turbidity (TDS < 1000 mg L−1) and a specific conductance below 1.5 mmhos/m (Ritchie et al., 

2003). Water quality needs to be frequently monitored if high-quality crops and yields are to 

be attained. For example, chemical oxygen demand (COD) and biochemical oxygen demand 

(BOD) are appropriate indicators for organic matter concentrations in irrigation water. When 

COD and BOD are high in irrigation water, much oxygen will be consumed during the 

decomposition of organic matter resulting in an anaerobic condition (Kim et al., 2020). In this 

process, soil oxides such as Fe3+, Mn5+ and SO42− will exhaust oxygen to reduce the 

oxidation-reduction potential. Subsequently, the generated iron, manganese, sulphides, and 

organic acids may limit crop uptake and the absorption of nutrients. This frequently results in 

stunted growth, poor quality, and reduced harvests. Water salinity is a major problem in 

irrigation waters (Zaman et al., 2018). Excess salt increases the osmotic pressure of the soil 

solution, a situation that can result in a physiological drought condition. The presence of excess 

sodium will result in a deterioration of the soil structure, thereby reducing water penetration 

into and through the soil.  

The presence of aquatic vegetation and algae (Error! Reference source not found.) in i

rrigation canals can result in substantial operational problems with economic implications in 

water supply systems and waste significant volumes of water. Reduction of hydrological 

capacity and flow speed in affected canals, water log lond-weirs, block irrigation systems and 

filters are some of the problems.  
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Figure 1: Growth of aquatic vegetation and algae in the irrigation canal 

 

The presence of bacteria in irrigation water can potentially spread serious human infections, 

such as severe hemorrhagic and gastrointestinal diseases, through agricultural produce (Zaman 

et al., 2018). Among various microbial parameters, Chl-a and blue-green algae concentration 

are the strongest proxies used to assess water quality. Quantifying chlorophyll-a's concentration 

is a standard method of monitoring the microbial conditions of a water body (Kim et al., 2020). 

Deriving water quality variables from remote sensing observations requires two main steps: (i) 

atmospheric correction to retrieve the water leaving signal and (ii) deriving water quality 

variables from the water leaving signal. Eventually, both steps could be combined and 

simultaneously carried out. Water quality variables that can be derived from optical 

observations are those with the property of changing the visible sunlight through absorption 

and/or scattering (Kirk, 1994), namely phytoplankton pigment (blue-green bacteria, Chl-a), 

suspended particulate matter (SPM), clarity and coloured dissolved organic matter. This study 

will focus on SPM, blue-green bacteria, clarity and Chl-a concentrations.  

i. Representative in situ measurements 

A boat will be used to navigate the water bodies for sample collection. In situ measurements 

of water quality parameters, specifically, Chl-a, will be collected during the summer (October 

– March) seasonal conditions. In particular, harmful algae usually bloom during the warm 

summer or when water temperatures are warmer than usual, and the water is calm (Kim et al., 

2020). Sampling sites will be selected randomly to span the entire surface of the reservoir. The 
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sample size will be determined as a sufficient representation of the whole system, including 

deep and shallow areas, coves and main basins. Presampling of the dam will be conducted in 

Google Earth Pro, where the experimental reservoir’s polygon is digitized. The digitized 

polygon will then be imported into ArcGIS 10.8, which will be used to generate sampling 

points. These points will then be uploaded into a hand-held Trimble Global Positioning System 

(GPS) with an accuracy of less than 100 cm. These locations will be used to navigate to each 

sample point for field data collection. In the field, the boat will be used to navigate to the 

sampling points.  

The parameters measured in the field campaigns, the type of measurement and the 

method/equipment used are presented in Error! Reference source not found.. 

Table 1: Parameters measured in field campaigns 

Parameter Type Method/Equipment 

Sky-sun downwelling 

irradiance - 𝑬𝒅 

In-situ radiometer Hyperspectral radiometer – TriOS 

RAMSES-ACC-VIS 

Water leaving 

upwelling radiance - 𝑳𝒘 

In-situ radiometer Hyperspectral radiometer – TriOS 

RAMSES-ARC 

Chlorophyll-a  Laboratory Analysis Spectrophotometry  

CDOM In-situ Fluorometer – TriOS microFlu 

TSS Laboratory Analysis Total Suspended Solids Dried from 

103 to 105°C 

Seschi depth Secchi Disk Secchi disk, 20 or 30 cm in diameter 

used to measure water transparency or 

turbidity. 

Error! Reference source not found. shows the layout presentation for CDOM measurements u

sing a fluorometer. At each sampling point, the downwelling irradiance (𝐸𝑑) and water-leaving 

upwelling radiance 𝑳𝒘 signals will be recorded simultaneously at least three consecutive times 

together with the CDOM measurement. The recordings are calibrated automatically in the 

software of the equipment (MSDA_XE) using the calibration files provided by the 

manufacturer.  
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Figure 2: Layout configuration for radiometric and fluorometer measurements 

 

For Chl-a, water samples will be collected in polypropylene bottles, tightly sealed and 

refrigerated. After field sampling, samples will be transported to a water quality analysis 

laboratory for approximately four hours or less. In the lab, samples will be kept in the dark 

refrigerator at around 4°C between 12 to 24 hours to ensure the samples are not exposed to any 

light or heat to prevent degradation of Chl-a. During the analysis, the Chl-a water samples will 

first be filtered using paper fibre (Whatman GF/C), then extracted from the water samples using 

90% acetone, followed by centrifugation for 10 to 20 minutes at about 4000 rpm in the 

centrifugal machine. The spectrophotometer will finally be used to measure the Chl-a content 

in the samples. 

Turbidity is a measure of light scattering caused by suspended particles in natural waters 

(Robert et al., 2017; Sakuno et al., 2018). It is a measure of water clarity, and high turbidity 

levels generally indicate poor water quality. Turbidity is usually reported in formazin turbidity 

units (FTU) units or the equivalent nephelometric turbidity units (NTU). In this study, the 

analysis of the seschi depth (Error! Reference source not found.) is used to measure clarity b

ecause in situ observations for this variable are easy to collect. A Secchi disk (20/30cm radius) 

will be used to measure turbidity at each sampling location in the dam. The disk will be lowered 
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slowly into the water using an attached rope on the shady side of the boat until it is no longer 

visible. Where the rope enters the water, it will be marked to measure (in metres) how far the 

disk had to be lowered into the dam until it was no longer visible. This process will be repeated 

twice to ensure the accuracy of the measurements. The GPS location of the sampling points 

will be recorded. 

 

Figure 3: Two different kinds of Seschi disks with different diameters 

 

ii. Remotely sensed data 

The UAV carrying the MicaSense will be flown over the reservoirs around noon, regarding the 

sun angle (between 30° and 60° to minimize sun-glint effects and specular reflections). N 

ground control points will be distributed evenly in the flight area, and x,y, and z coordinates 

will be surveyed with a GPS with sub-metric precision. The flight mission will be planned as 

a simple grid with a distance between flight lines of 20-45 m. and a flight height of 120 m; the 

drone’s speed has to be set. Depending on the sampling frequency of the in-situ device, n 

measurements will be recorded within 15 minutes of the sensor overpass. Validation protocol 

(Lee, 2006) commonly advises to average in-situ measurements that fall within a temporal 

window of 1 to 4 h of the sensor overpass. No atmospheric correction will be applied to the 
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UAV imagery, as the effect of the thin atmosphere layer between the sensor and the water 

surface is neglected.  

The image’s geo-referencing, radiometric processing and mosaicking will be performed with 

the Pix4D software (Pix4D, Lausanne, Sw.). Raw multispectral images will be corrected to 

ground absolute reflectance using the irradiance measures taken along with each snapshot by 

the MicaSense sensor onboard the UAV and spectrally rescaled against a calibration panel with 

values around 70 % of diffuse reflectance in the visible-infrared spectrum. The image 

information extraction will be done at different sampling sizes corresponding to the median of 

all the pixel values using QGIS 2.18.15.  

3.1.2 Water level and quantity 

The summer season often sees a decline in water levels in agricultural canals and reservoirs. 

The study will analyse surface water dynamics over the wet and dry periods of the selected 

catchment reservoirs. Ground measurements will be used to validate remotely sensed 

observations. 

i. Ground truth observations 

In-situ observations will be obtained with the levelling technique (Error! Reference source n

ot found.). Water level data from ground stations should fulfil certain requirements to use them 

for validating altimetry measurements from remotely sensed. Firstly, the ground stations must 

be very short from the sensor ground track. This helps in minimizing measurement errors due 

to location. These errors may be due to the backwater effect, tidal waves, or both. Secondly, 

the date and time measurements of the gauge and altimetry data must match to make 

comparisons. Poles of the same height will be located along the area of interest (e.g. along the 

canal) to have stable in-situ reference points. These poles’ horizontal and vertical coordinates 

are measured on multiple days (one measurement every week during the dry period) with a 

GNSS rover station Trimble RTK GNSS R8s. The offset between the metal pole and the closest 

water surface point will be measured with the levelling instrument Leica Sprinter 50 Digital 

Level. Levelling generally ensures sub-mm accuracy in height difference determination. 

Measurements will be done during calm days to minimise errors from waves and ripples.  
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Figure 4: Levelling system for in-situ ground-truth observations. Vertical absolute poles 

coordinates were measured with an RTK GNSS system. 

 

ii. Remotely sensed data 

Regarding water level measurements, the Global Navigation Satellite System (GNSS) is the 

most plausible practical candidate for measuring the water level in reservoirs. LIDAR and 

GNSS receivers can be mounted on the UAVs (Error! Reference source not found.). Several e

xperimental flights will be conducted over the reservoirs between 1200 and 1400 SAST at 

approximately 90, 100 and 120m height. In all the flights, the wind speed must be minimal, 

approximately less than 1.5m/s. The time series of the measured altitude of the UAV and the 

estimated heights will be recorded.  

The vertical distance of the receiver antenna from the sea surface (h) can be separately 

determined together with the GNSS antenna height (Ha) to obtain the water surface height (HS) 

(Error! Reference source not found.). With knowledge of the relative position between a U

AV and a GNSS satellite, and the assumption of a flat, non-tilted reflection surface, the 

difference in the geometric ranges between the direct and reflected signal paths, and delay, can 

be calculated. 
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Figure 5: Schematic diagram showing UAV flight to retrieve water surface elevation 

observations  

 

3.1.3 Flood mapping in agricultural canals 

Presently, around one million hectares of South Africa are under irrigation, accounting for 

approximately 62% of total national water use (Adetoro et al., 2020). Large volumes of water 

are transported through thousands of kilometres of irrigation canal systems across the country, 

all of which experience a level of flooding. It is estimated that a minimum average of 20% to 

30% of the water supplied to the irrigation sector is lost due to leakages out of conveyance 

structures, evaporation, spillage and flooding, among others. Flooding and leaks contribute to 

the highest loss. 

i. Ground sampling 

Floods in irrigation canals are caused by intensive precipitation over long periods, causing the 

river to overflow its banks, and ultimately inundating the neighbouring areas (Karaoui et al., 

2019). This process is slow and can last for several days. Flood inundation mapping is similar 

to water body mapping while facing some challenges, such as the short response time and cloud 

cover. In this study, the rainfall data near the canals will be used to track the rainfall patterns 

in the catchment. The location of the irrigation database in vector format will be obtained from 
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relevant departments in the target locations. The database will contain polygons representing 

canals as determined during extensive field surveys done by the relevant departments in the 

target locations. During fieldwork, ground data will be collected, including measurements of 

the flood extent, surveys, interviews and mobile photographs. A well-distributed network of 

ground control points (GCP) for the flooded areas will be collected using a hand-held Trimble 

Juno 3D (Differential GPS) with sub-metre accuracy.  

ii. Remotely sensed data 

The remotely sensed data will be collected by flying the DJI M-300 drone during the flooding 

days. Designing and executing a good image acquisition plan for flood mapping is the most 

important part of any drone mapping project. The ultimate accuracy of the flood depth depends 

upon the quality of the images. Drone Deploy, an app with cross-device support, a web 

interface, and the DJI GS Pro app, will be used for flight path generation and execution. The 

images are acquired along a flight path, like a scanner, where the software finds the most 

efficient path up and down a specific area of interest (AOI) that coincides with the points 

collected during the field campaign. The overlap is set to 75% for both sideways and forward 

directions, with a flight altitude of less than 100 m. The images will be radiometrically 

corrected and geo-referenced. 

3.2 Experimental design and drone imagery 

Reservoirs and irrigation canals in the selected catchments, with diverse characteristics and 

extents, will be chosen to evaluate the performance of the proposed methods and techniques. 

The first step is to delineate the extent of these reservoirs.  

The DJI Matrice 300 (DJI M-300) drone, mounted with a MicaSense Altum camera and a GPS, 

will be used to capture aerial images over the reservoirs and agricultural canals in the selected 

catchments. The MicaSense Altum camera is a multispectral and thermal-imaging sensor that 

integrates five narrow spectral bands (blue, green, red, red-edge, and near-infrared) (Error! R

eference source not found.). The spectral range spans the visible region and a portion of the 

near-infrared (NIR) region, from 400 nm to 1000 nm. These bands have a sensor resolution of 

2064 × 1544 at 120 m (3.2 megapixels per multispectral band) and a ground sample distance 

(GSD) of 5.2 cm per pixel at 120 m height suggesting the optimum flight altitude above the 
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water surface to receive high-resolution images. The camera also has a 48° × 37° Field Of View 

(FOV) with an 8 mm focal length.  

Table 2: The wavelengths and bandwidths for the MicaSense sensor 

3.3 Methodology 

Error! Reference source not found.6 is a graphical representation of the processes and p

rocedures used to explore the importance of drones in enhancing food and water security. The 

procedure is informed by the need to monitor water quality and quantity of water reservoirs in 

light of climate change to maintain water and food security. The challenge requires innovative, 

efficient and cost-effective technologies to improve agricultural water management and enable 

smallholder farmers to improve productivity under water-limited conditions without increasing 

pressure on already strained water resources or constructing other dams.  

This project is designed to estimate (i) water quality, (ii) monitor temporal and spatial changes 

in water quantity and (iii) flood mapping using UAV imagery. Furthermore, types of spatial, 

temporal and spectral resolution sensors for monitoring the quality and quantity of surface 

water resources will be covered in detail. 

Band Center (nm) Band Width (nm) Range (nm) 

Blue 475  32  443 – 507  

Green 560  27  533 – 587 

Red 668  16  652 – 684 

Red Edge 717  12  705 – 729  

Near Infrared (NIR) 842  57  785 – 899  
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Figure 6: Methodological framework to explore the importance of UAVs in surface water 

management for food security 

 

3.3.1 Estimating water quality using UAVs 

The first step is to create a water-only image by applying unsupervised or supervised 

classification as described in the flooding or water level sections. Because water has spectral 

characteristics distinct from terrestrial features, water pixels will be grouped into one or a few 

distinct classes that could be easily identified. This can be achieved by further classifying the 

image based on the spectral profile and location of pixels. The classes can include open water 

and shallow water (where bottom sediments and/or macrophytes affected spectral response). 

These areas tend to have high spatial variability compared to open-water portions of the rivers. 

Based on this analysis, affected pixels can be removed.  

Next, the spectral-radiometric data from the “open water” images will be extracted from the 

areas around the sampling locations to develop relationships with in-situ water quality data. 

For this purpose, we will use each sample's imagery and GPS locations to delineate a polygon 

in a spectrally-radiometrically similar area (identified visually using different band 

combinations stretched to a range of water-only pixels) around each sample location. The 

number of pixels will depend on the pixel size. For example, 30 m imagery can have a 

minimum of 200 pixels in narrow portions of the rivers or areas with high heterogeneity and 
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up to 1700 pixels in wider, more homogeneous areas. The signature editor in ERDAS Imagine 

will be used to extract spectral and radiometric data from the polygons. Mean band values from 

the polygons will be imported into Microsoft Excel, ratios and differences for band 

combinations will be calculated, and data from the ground-based measurements and samples 

will be linked to the appropriate imagery samples. 

A suitable water quality retrieval algorithm is the key step to link the water leaving reflectance 

to the water quality variables in remote sensing of water quality (Lee, 2006; Salama et al., 

2012). Especially in inland reservoirs, where not only a high concentration of nutrients and 

dissolved organic substances can occur but also a mixing of Chl_a, TSS and blue-green algae. 

In synergy with in situ measurements, remote sensing of water is an important tool for 

monitoring the trophic status of inland waters. A major interest in using remote sensing data in 

aquatic environments is to ascertain the spatial and temporal variation of the water composition 

and investigate the origin and displacement of specific suspended or dissolved substances. 

However, not all water quality parameters can be estimated using remote sensing techniques 

(Ritchie et al., 2003; Sibanda et al., 2021). TSS, algae, DOM, oils, aquatic vascular plants, and 

thermal releases change the energy spectra of reflected solar and/or emitting thermal radiation 

from surface waters which can be measured using remote sensing techniques and are known as 

optically active components. Most chemicals and pathogens do not directly affect or change 

surface water's spectral or thermal properties, so they can only be inferred indirectly from 

measurements of other water quality parameters affected by these chemicals (Ritchie et al., 

2003).  

To develop models to predict water quality variables from the imagery products, the project 

will perform empirical relationships between spectral properties and water quality parameters. 

The general forms of these empirical equations are: 

𝑌 = 𝑎 + 𝑏𝑋    or   𝑌 = 𝑎𝑏𝑋 

where Y is the remote sensing measurement (i.e., radiance, reflectance, energy), X is the water 

quality parameter of interest (i.e., suspended sediment, Chl-a), and a and b are empirically 

derived factors.  

i. Chl-a  
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Chl-a is the main pigment in all phytoplankton, with varying amounts per taxonomic group 

(Gitelson, 1992). It is widely used as a proxy in determining phytoplankton concentration in 

water bodies. Estimating Chl-a concentrations from remotely sensed imagery requires the 

development of algorithms with maximum sensitivity for the concentration of this pigment and 

minimum sensitivity to the concentration of other components present in the water (Gitelson, 

1992; Ritchie et al., 2003). Thus, estimating this Chl-a for inland waters using remote sensing 

is challenging since the optical properties of these types of water are significantly influenced 

by mineral particles, sediments, and organisms associated with phytoplankton (Gitelson, 1992).  

Simple models of water colour (optical spectral reflectance) for a range of values of Chl-a 

concentrations will be derived based on the work of Gitelson (1992) and Gower et al. (1999). 

These models were developed based on the observation that water reflectance spectra for lower 

Chl-a concentration (<30 mgm-3) peak at 685 nm and the peak in the wavelength range 700–

710 nm for higher Chl-a concentrations. For developing the empirical models, linear fits will 

be applied, expressing the relationships between radiance/reflectance at different wavelengths 

of the micasense sensor in every match-up point and their corresponding “in situ” water 

parameter data as a linear function of the format:  

𝐶ℎ𝑙𝑎(𝑚𝑔𝑚−3) =  𝑎 + 𝑏 × 𝑆𝐵𝐶 

where a and b are the model parameters (intercept and slope, respectively), and SBC is the 

tested Spectral Band Combination. SBCs can either be an index, a ratio or an algorithm. Some 

of these combinations (of two and three bands) are those proposed by different authors and will 

be adapted to MicaSense spectral bands in this project. 

The results from the parametric models can be compared to band ratios of near-infrared 

(NIR)/red (R) and NIR/blue (B) as well as other vegetation indices such as the green 

normalized difference vegetation index (GNDVI) and normalised difference vegetation index 

(NDVI) will be computed. GNDVI is based on two-band combinations of the red-edge region 

of the spectrum and is very sensitive to the change in chlorophyll content, which is related to 

the nitrogen content.  

i. Total suspended solids  
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Total suspended solids (TSS) is the mass concentration (mg/L) of particles small enough (< a 

few mm) to remain suspended in the water column by natural levels of turbulence and large 

enough to be collected on a filter with a specified pore size (Caballero et al., 2014; Chen et al., 

2015). Under normal conditions, turbulence keeps such particles suspended on timescales of 

hours to days (or even longer), but they eventually settle by gravity and are deposited to 

reservoir bottoms. Before they settle, they reduce the clarity of the water. Suspended sediments 

are the most common pollutant in weight and volume in the surface waters of freshwater 

systems. Suspended sediments increase the radiance emergent from surface waters in the 

visible and near-infrared proportion of the electromagnetic spectrum (Ritchie et al., 2003).  

Error! Reference source not found.7 shows a relationship between suspended sediments and r

adiance or reflectance from spectral wave bands or combinations of wave bands on remote 

sensing sensors. The wavelengths between 700 and 800 nm are most useful for determining 

suspended sediments in surface water.  

 

Figure 7: The relationship between reflectance and wavelength as affected by the concentration 

of suspended sediments (Adapted from Ritchie et al. (2003)) 

 

Empirical relationships (algorithms) between the concentration of suspended sediments and 

radiance or reflectance for a specific date and site will be developed in this study using the 

scattering peak at 700nm. The Iterative Stepwise Elimination Partial Least Squares Regression 

(ISE-PLS) will be used to estimate TSS. To improve the performance of the partial least squares 

(PLS) regression model, the optimum wavelengths with good predictive ability are selected for 
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model calibration. The wavelengths elimination process depends on the importance of the 

predictors (𝐶𝑖), described as follows: 

𝐶𝑖 =  
|𝛽𝑖|𝑆𝑖 

∑ |𝛽𝑖|𝑆𝑖 
𝐼
𝑖=1

 

where 𝛽𝑖is the regression coefficient and 𝑆𝑖   is the standard deviation of the predictor, both 

corresponding to the predictor variable of the waveband 𝑖.  

Initially, all available wavebands of the hyperspectral sensor (400–900 nm) will be used to 

develop the PLS regression model. Then variables are ranked from most contributed to least 

contributed according to the predictor 𝐶𝑖; in other words, the predictor𝐶𝑖represents the weight 

of each variable. The least contributed variable is eliminated, and the PLS model is recalibrated 

with the remaining predictor variables (Forina et al., 2004). The model-building procedure is 

repeated, and in each cycle, the predictor variable with the minimum importance (i.e., the less 

informative wavelength) is eliminated until the final variable is eliminated. To determine the 

optimum number of wavelengths to include in the final model, LOO cross-validation is 

conducted after each calibration. The final model with the maximum predictive ability is 

calibrated by the minimum value of root mean squared error (RMSE) (D'Archivio et al., 2014). 

ii. Seschi disc transparency (SDT) 

This project will adopt regression analysis of micasense bands and nearly contemporaneous 

ground observations. To develop models to predict SDT variables from the imagery products, 

nonlinear power and step-wise multiple regression model will be developed and used.   
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3 shows the models that will be adopted in this study. This empirical approach requires 

carefully timed and spatially distributed field measurements. Typically, two or three 

consecutive scenes along a single track will be combined (resulting in a single regression 

model). The resulting regression model will then be applied to the image data for all reservoirs 

in each scene, either on a whole-reservoir level (using the spectral signatures extracted 

previously) or an individual-pixel level.  

Regression statistics will be calculated for the relationship between the natural log of SDT and 

remotely sensed single bands, band ratios and multiple bands, successively increasing the time 

window between sensor overpass and ground observation from same-day ground observations. 

Previous studies have used models to address the curvilinear behaviour of the relationship 

between ground and remotely sensed observations. 
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Table 3: Retrieval models of total suspended solids (TSS) using regression models 

Model References 

𝐥𝐨𝐠(𝑪𝑺𝑫𝑻 ) = 𝒂 + 𝒃 ∗ 𝐥𝐨𝐠 𝑹(𝟕𝟏𝟎) Kallio et al. (2001) 

𝑪𝑺𝑫𝑻 =  𝒂 ∗  (𝒃 ∗ 𝑹(𝟔𝟒𝟓)) Miller and McKee (2004) 

𝑪𝑺𝑫𝑻 = 𝒂 (𝑹(𝟔𝟔𝟎))𝒃 Isidro et al. (2018) 

𝑪𝑺𝑫𝑻 =
𝒂 ∗ 𝑹(𝟖𝟐𝟓)

𝟏 − (
𝑹(𝟖𝟐𝟓)

𝒄
)

− 𝒅 
Caballero et al. (2014) 

𝐥𝐨𝐠(𝑪𝑺𝑫𝑻 ) =  
−𝒃 ± √𝒃𝟐 − 𝟒𝒂(𝒄 −

𝒍𝒐𝒈𝑹(𝟖𝟔𝟓)
𝒍𝒐𝒈𝑹(𝟔𝟓𝟓)

)

𝟐𝒂
 

Wang et al. (2018) 

𝑪𝑺𝑫𝑻 = 𝒂 ∗ (𝑹(𝟔𝟒𝟓))𝟐 + 𝒃 ∗  𝑹(𝟔𝟒𝟓) Ondrusek et al. (2012) 

𝑵𝒆𝒖𝒓𝒂𝒍 𝒏𝒆𝒕𝒘𝒐𝒓𝒌 Chen et al. (2015) 

NOTE: a, b and c are regression model coefficients where independent variables are the observed spectral radiance values 

from the respective bands. 

 

iii. Other parameters, such as nutrients and DO 

However, nutrients (i.e., total nitrogen and phosphorus) concentrations, dissolved oxygen 

levels, and microorganisms/pathogens are not optically active. Given that nutrients are 

significant factors in the initiation, propagation, and growth of Chl-a, it is imperative to 

estimate their concentrations. Ratio indices are often constructed using the scattering peak at 

the red edge (700 nm), the reflectance troughs caused by chlorophyll absorption at 670 nm, and 

pigment absorption at 592 or 620 nm can be used to predict total nitrogen and total phosphorus.  
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Deep learning architectures, including recurrent and convolutional neural networks, appear 

particularly attractive due to their great success in many recent studies, outperforming many 

other methods in a variety of remote sensing applications that will be adopted in this study (Ma 

et al., 2019).  

3.3.2 Flood mapping 

UAVs provide an affordable and flexible solution for gathering information critical for 

effective flood risk assessment and response to a flood event in small- to medium-scale areas. 

The ability to quickly deploy UAVs allows access to real-time aerial information about 

detecting and mapping flooding extents or leaks along irrigation canals and dams. Monitoring 

the evolution of a flood event provides first responders with information to better prioritize 

resources in dangerous situations.   
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 shows the spectral water indices used to map leaks and crop fields' flooded areas. These 

spectral indices successfully delineate clear waters, but this project's challenge is to delineate 

floods in crop fields. The challenge is mixed pixels, affecting the spectral profile, thus 

underestimating the flooded area. However, the high spectral, spatial and temporal resolution 

of sensors onboard UAVs will estimate the flooded area of crop fields with better accuracy.  

When it comes to stream flooding, drones are essential for accurate and detailed streamflow 

measurement, which include (i) optimization of workflows to enable extraction of terrestrial 

and subsurface topographies through accurate image registration using automatic or direct geo-

referencing techniques; (ii) the determination of water levels through the image- and 

turbulence-derived metrics; and (iii) the derivation of flow velocities through appropriate 

techniques based on the characteristics of flow, duration of observation, seeding density.  

High spatial resolution (< 1m) drone images of river width, water depth and flow velocity can 

be used as a surrogate to represent discharge variations and be used in flood monitoring. The 

drone images will be geo-referenced and projected into the Universal Transverse Mercator 

coordinate system (UTM Zone 36). The average river width (𝑊𝑒 ) at a river segment upstream 

of the station will be measured from space. Because of the spectral characteristics and high 

spatial resolution of the drone images, it is feasible to determine the water surface area (𝐴𝑡 ) 

(m2) with relatively high precision using visual interpretation and delineating the area defined 

by the edge of the water surface adjacent to the river channel. The area of the dry channel (𝐴𝑠 ) 

(m2) can then be determined, and the difference between (𝐴𝑡 ) and (𝐴𝑡 ) is the water surface 

area in the specified river segment (𝐴𝑤 ) (m2). The length of the central line of the river channel 

(𝐿) (m) is measured from the drone images. The equation below will be used to calculate (𝑊𝑒 ) 

𝑊𝑒 =  
𝐴𝑤

𝐿
=  

𝐴𝑡 − 𝐴𝑠

𝐿
 

Different regression methods can then be used to model the relationship between an observed 

and measured discharge. 

3.3.3 Water levels and quantity 

The optical sensor onboard the drone will serve the purpose of measuring surface water. 

Increasing the spatial resolution of sensors has been a key goal of remote sensing research, 
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hence introducing high spatial resolution multispectral sensors onboard drones. These can 

provide images with spatial resolutions at a meter or even sub-meter level. Water boundaries 

cannot be easily distinguished over a mixed pixel; however, water levels in water bodies can 

be detected successfully using multispectral sensors at higher resolution. 

The principle of extracting surface water from optical images is the obviously lower reflectance 

of water in infrared channels compared to that of other land cover types. Based on this principle, 

several algorithms have been developed to extract water levels using multispectral sensors. An 

easy and effective way to extract water is to use water indices, calculated from two or more 

bands, to identify the differences between water and non-water areas. The only challenge is to 

select optimum band combinations and the optimum threshold, especially in polluted or 

vegetated water bodies. 

Several water indices will be tried and tested in this study.   
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4 shows some of the indices that will be tested for delineating water surfaces in the selected 

catchments. However, some studies have successfully used vegetation indices such as NDVI 

to delineate water surfaces. Therefore, vegetation indices will not be spared in this project. 

Spectral indices will be derived from the MicaSense Altum sensor to map the spatial and 

temporal changes of water bodies in the selected catchments.  

Thresholding is one of the most critical issues in using water indices to extract water bodies. 

Based on the reflectance characteristics of water, spectral indices values for water are usually 

greater than 0. Therefore, a threshold of 0 is often applied to extract water from index images 

(Bangira et al., 2019; Xu, 2006). However, adjustment of the threshold value usually achieves 

better extraction results. This is especially tricky when thresholding either a time series of 

images that cover the same water body or a single image that covers a group of water bodies 

because automation would be impossible if manual adjustments on the threshold value for each 

image were required (Bangira et al., 2019; Fisher et al., 2016). An automatic histogram-based 

thresholding algorithm, Otsu’s method (Otsu, 1979), selects threshold values that maximize 

the between-class variances of the histogram and will be used. 
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Table 4: Popularly used spectral indices for delineating water bodies 

Index Equation Source 

Normalized 

difference water 

index (NDWI) 

(𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅)

(𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅)
 

McFeeters (1996) 

modified NDWI 

(mNDWI) 

(𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅)

(𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅)
 

Xu (2006) 

Automated 

water extraction 

index (AWEI) 

4  × (GREEN − SWIR) − (0.25 × NIR
+ 2.75 × SWIR) Feyisa et al. (2014) 

Water index 

(WI) 

𝑥 + 𝑎(𝐺𝑅𝐸𝐸𝑁) + 𝑦(𝑅𝐸𝐷) − 𝑏 (𝑁𝐼𝑅) − 𝑐 × 𝑆𝑊𝐼𝑅1 −

 𝑑(𝑆𝑊𝐼𝑅2) 

𝑥, 𝑦, 𝑏, 𝑐 𝑎𝑛𝑑 𝑑 𝑎𝑟𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑡𝑜 𝑏𝑒 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑒𝑑 𝑏𝑦 𝑡ℎ𝑒 𝑢𝑠𝑒𝑟 

Fisher et al. (2016) 
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The threshold value t separating these classes is determined by a set of equations as outlined in 

(Otsu, 1979) as follows: 

δ2 = 𝑃𝑛𝑤 . ( 𝑀𝑛𝑤 − 𝑀)2 + 𝑃𝑤 . (𝑀𝑤 −  𝑀)2, (1) 

𝑀 =  𝑃𝑛𝑤 . 𝑀𝑛𝑤 + 𝑃𝑤  . 𝑀𝑤 (2) 

𝑃𝑛𝑤 +  𝑃𝑤 = 1 (3) 

𝑡∗ =  {𝑃𝑛𝑤 .𝑎≤𝑇≥𝑏   
𝐴𝑟𝑔 𝑀𝑎𝑥

( 𝑀𝑛𝑤 − 𝑀)2 + 𝑃𝑤 . (𝑀𝑤 −  𝑀)2}           (4) 

where 𝛿 is the inter-class variance of the non-water class and the water class; 𝑃𝑛𝑤 and 𝑃𝑤  are 

the probabilities of one pixel belonging to non-water and water, respectively; 

𝑀𝑤  and 𝑀𝑛𝑤 are the mean values of the non-water and water classes; and 𝑀 is the mean 

value of the feature image. 

The supervised machine learning algorithms such as random forest (RF), support vector 

machine (SVM), constant optimisation parameter SVM (c-SVM, decision trees (DTs) and k-

NN, which are established in remote sensing, will be used to classify the image. These 

algorithms are simple, flexible and computationally efficient (Bangira et al., 2019).  

The exponential, power and polynomial models will be used to fit the relationship between a 

reservoir's in situ measurements and satellite observations. These models are used to fit the 

relationship to find the optimal relationship between the in situ-observed water levels and 

micasense measurements. Error! Reference source not found.8 summarizes the m

ethodological framework when it comes to the use of drone imagery for estimating the water 

level of a reservoir.  
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Figure 8: Multispectral image processing and measurement of water levels 

 

3.4 Model validation 

A 3:2 sample split ratio will be employed for classifier and accuracy assessment, as suggested 

in many studies. The number of test samples needed for accuracy testing will be based on the 

multinomial distribution for a confidence interval of 95% for the accuracy assessment 

(Congalton and Green, 2019). Testing samples per class will be determined based on the 

percent coverage calculated from an initial unsupervised classification, as suggested by 

(Ballanti et al., 2016). The non-water classes will be combined (reclassified) into one class, 

namely non-water, to assess the binary thresholding experiments. The same training (input) 

and testing (validation) datasets will be used for all the classification experiments to ensure that 

differences in accuracy could be attributed to the nature of the class allocation processes. 

A producer’s accuracy (PA), user’s accuracy (UA), overall accuracy (OA), and the kappa 

coefficient (K) will be generated for each classification experiment. OA is easily interpreted as 

it represents the percentage of classified pixels in the image that have been correctly labelled. 
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At the same time, K can be used to assess statistical differences between classifications 

(Ballanti et al., 2016). The statistical significance of the accuracy differences among 

experiments will be evaluated using non-parametric statistical tests, such as McNemar’s and 

Friedman’s, as implemented in the Statistical Package for Social Sciences (SPSS). Differences 

will be considered statistically significant at p < 0.05. 

Statistical indicators such as root-mean-square error (RMSE), absolute relative error (ARE), 

bias, and mean absolute error (MAE) between the measured and predicted values will be used 

to evaluate the remote sensing inversion models used.  

3.4.1 Datasets to be developed include 

i. Flood maps 

ii. Water quality maps 

iii. The concentration of water parameters 

iv. Spatial and temporal patterns of water bodies in the selected catchments 

v. Flood depths estimates 

vi. Water levels and quantity 

 

3.5 Developing datasets 

3.5.1 Hardware and software environment 

The multispectral MicaSense Altum with DLS 2 sensor and DJI Matrice 300 drone are 

available. The drone has a maximum payload capacity and maximum take-off weight of 2.7 kg 

and 9 kg, respectively. The Altum integrates five high-resolution narrow bands with a 

radiometric thermal camera, producing advanced multispectral and thermal imagery in a single 

flight. The multispectral bands have a sensor resolution of 2064 × 1544 at 120 m (400 ft) and 

a ground sample distance of 5.2 cm per pixel. The thermal infrared sensor has a resolution of 

160 × 120 at 120 m (400 ft) and a ground sample distance of 81cm per pixel at 120m. The DLS 
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2 is the light sensor accompanied by the camera. DLS 2 is an innovative technology used for 

irradiance and sun angle measurements. It provides more accurate and reliable data, 

substantially improves radiometric accuracy, and reduces post-processing time. Error! R

eference source not found.5 gives the details of the camera’s multispectral and thermal 

infrared lenses. 

 

Table 5: Multispectral bands and band widths (nm) of Altum sensor 

Band Spectral Bands Centre (nm) Band Width 

(nm) 

Resolution: 2064 

× 1544 at 120m 

(MP) 

1 Blue 475  20  3.2 

2 Green 560  20 3.2 

3 Red 668  10 3.2 

4 Red Edge 717  10 3.2 

5 Near-Infrared 840  40 3.2 

6 Long Wave Infrared 

(LWIR) 

Thermal 

Infrared 

8-14um ×120 at 120m 
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Annex: INSTRUMENTS and SOFTWARE 

LIDAR sensor 

LIDAR sensor specifications  

Drone Platform DJI Matrice 300 

Supplier: TBA 

Name of system: DJI ZENMUSE L1 LIDAR SYSTEM or RIEGL VQ-840-G 

Amount: TBC 

Description: The Zenmuse L1 integrates a Livox Lidar module, a high-accuracy IMU, and a 

camera with a 1-inch CMOS on a 3-axis stabilized gimbal. The L1 has high efficiency, covering 

2 km2 in a single flight with a high vertical accuracy of 5cm and a horizontal accuracy of 10cm. 

It has a point rate of 240000 pts/s and a detection range of 450 m. 

 

Hyperspectral sensors 

Sensitivity studies spanning a range of diverse aquatic water bodies recommend 

hyperspectral sensors bandwidths of 5 nm. 

Hyperspectral sensor specifications  

Drone Platform DJI Matrice 300 

Supplier: TBA 

Name of system: Gaiasky-mini Hyperspectral Imaging Camera 

Amount: TBC 

Spectral Range 400 - 1000 nm 

Spectral Resolution 2.1 nm 

Spectral Channels 281 

Spectral Pixels 561  

Spatial Channels 900  

Max Frame Rate 249 fps  

Signal-to-Noise Ratio (peak) 368 (2x bin)-520 (4x bin)  

Bit Depth 12 Focal Length (nm) 17  

FOV (deg),  

IFIV (mrad) 17.6, 0.88  

Weight 0.6 kg  

Dimensions (cm) 10.0 x 12.5 x 5.3 

 

SOFTWARE 

The software used throughout the research may include the following: ArcGIS 10.8; 

Pix4Dfields; QGIS Desktop 3.22; ENVI, ERDAS; Li-DARMill of Phoenix LiDAR Systems,  

R-statistical package, python.  


