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1. INTRODUCTION 
1.0 BACKGROUND AND CONTEXT 

Aquatic foods are a crucial component of the global food system, offering numerous benefits ranging from 
nutrition to economic stability. However, these systems face a range of stressors, including overharvesting, 
pollution, climate change impacts, and governance challenges. These stressors threaten the sustainability 
of aquatic ecosystems and impact the livelihoods and food security of communities dependent on these 
resources. The Resilient Aquatic Food Systems (AqFS) Initiative, a collaboration between World Fish and the 
International Water Management Institute (IWMI), represents a concerted effort to address these challenges. 

1.1 AQFS INITIATIVE AND ITS FOCUS IN GHANA 

The AqFS Initiative operates across six regions and 11 countries, focusing on systematic challenges such as 
data gaps, gender imbalances, and water mismanagement. The Initiative’s goal is to leverage aquaculture 
for multi-use purposes, combating food insecurity and promoting sustainable practices. Specifically, in 
Ghana, the Initiative aims to integrate AqFS into multifaceted water management plans and strengthen data-
driven strategies to transform AqFS in the face of climate change. 

1.2 PROJECT OBJECTIVES IN NORTHERN GHANA 

In Northern Ghana, the AqFS Initiative focuses on introducing fish cage culture in small reservoirs, 
collaborating with the Fisheries Commission and the Water Research Institute (CSIR-WRI). The overarching 
objectives are to enhance the multifunctionality of water bodies, improve food security, and empower 
women and youth through aquaculture business development. The Initiative also explores scaling successful 
business models to communities around inland valleys, focusing on identifying and characterizing small 
reservoirs for potential development. 

1.3 METHODOLOGICAL APPROACH: MACHINE LEARNING AND REMOTE SENSING 

This technical report presents a comprehensive analysis of the dynamics of small reservoirs in Northern 
Ghana, using cutting-edge machine learning techniques and remote sensing data processed through the 
Google Earth Engine (GEE). The approach involves mapping small reservoirs, assessing their maximum 
extent, and analyzing their monthly water availability, particularly during the dry season. This geospatial 
analysis aims to perform a suitability analysis based on biophysical and socioeconomic characteristics, 
enabling a more informed selection process for aquaculture development. 

1.4 RELEVANCE AND IMPLICATIONS 

The findings of this report are crucial for understanding water availability and the potential for aquaculture 
in small reservoirs. By providing detailed insights into the dynamics of these water bodies, the report 
supports the broader goals of the AqFS Initiative in enhancing food security, promoting sustainable 
aquaculture practices, and empowering local communities in Northern Ghana. The methodologies and 
insights derived from this study also contribute to addressing the broader challenges aquatic food systems 
face globally, as highlighted by various researchers and initiatives. 
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2. METHODOLOGY 
2.1 DATA ACQUISITION   

We retrieved multispectral imagery over the five northern regions of Ghana (Upper West, Upper East, 

Northeast, Northern, and Savannah) for the study period. These provide high resolution ranging from 10-

20m images of the selected regions at 5-day intervals when combining images from Sentinel-2A and 

Sentinel 2B, which began operating in June 2015 and March 2017, respectively. We selected images from 

November to April for each dry season between 2018 and 2023. However, the acquisition of images was 

done monthly throughout the study period. The image collection within each month was clipped to the 

boundary of the study area to reduce storage issues and processing time. This resulted in a total of 30 

months of different images. The number of images attained varied across the months. For instance, 190, 

202, and 169 images were obtained for November 2018, 2019, and 2022, respectively. 

2.2 IMAGE PRE-PROCESSING  

In tropical regions, frequent and dense cloud cover can significantly impede the accuracy of satellite imagery 

analysis. This is a critical issue when assessing water bodies, as clouds can lead to misinterpretation of water 

pixels. Clouds and water bodies often share similar spectral properties, confusing image processing 

algorithms. This spectral similarity can result in overestimating or underestimating water extent, directly 

impacting the accuracy of studies on water resource management and ecological assessments. 

Additionally, optical remote sensing imagery, commonly used to monitor the spatial and temporal 

distribution patterns of inland waters, faces limitations due to cloud contamination. This contamination often 

results in low-quality images or missing data, further complicating the analysis. Selecting cloud-free scenes 

or combining multi-temporal images to produce a cloud-free composite image can partially overcome this 

issue, but it often comes at the cost of reduced monitoring frequency. This trade-off highlights the need for 

advanced and more robust image processing techniques to effectively differentiate between clouds and 

water bodies, especially in tropical environments where cloud cover is a persistent challenge. 

Therefore, we applied a cloud mask to all images using the quality assurance band (QA60) to eliminate cirrus 

and thick clouds from the dataset. However, we found that this technique could not remove clouds in 

severely affected regions in the study area for some specific months. We found that images obtained for 

April for each dry year contained some level of clouds even after applying the cloud mask. Figure 1 

compares the image collection of April 2018 before and after applying the cloud mask from the QA60 band. 

Areas within the enlarged part of the study area contained cloud footprints and shadows even after applying 

the cloud mask (Figure 2). There are several other methods of creating cloud-free images from image 

collections. Whereas some methods apply machine learning algorithms such as random forests, support 

vector classifiers, and stochastic gradient descent (see Hollstein et al. [1]) for cloud removal, others use 

manual methods to create cloud-free images that are as artifact-free as possible [2]. Appendix 1 reveals the 

various methods tested in this study and examples of their outputs. However, after applying some of these 

methods, four major issues were consistently persistent. These include: 1. Footprints of clouds were not 

entirely removed, 2. Some transparent clouds were not removed; 3. Images with more than 75% clouds were 

not corrected, 4. Some water pixels were mistaken as shadows or clouds and removed.  



3 
 

We therefore applied the Sentinel-2 Cloud Masking with the s2cloudless algorithm in Google Earth Engine 

(GEE). Overall, this approach was superior in correcting the major issues observed compared to the previous 

techniques. The s2cloudless represents an automated cloud-detection algorithm explicitly designed for 

Sentinel-2 imagery [3]. This algorithm relies on a gradient-boosting technique and was created by the EO 

Research team at Sinergise. It is openly available under the MIT License and can be accessed via the link: 

https://github.com/sentinel-hub/sentinel2-cloud-detector. The algorithm was trained using an extensive 

global dataset and is a mono-temporal algorithm, disregarding spatial context, thereby allowing its 

execution at any resolution. GEE offers users precomputed s2cloudless cloud probability maps and masks, 

covering the entire Sentinel-2 archive [4].  

 

Figure 1. Image collection of April 2018 before (A) and after (B) applying the cloud mask from the QA60 band 

https://github.com/sentinel-hub/sentinel2-cloud-detector
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Figure 2. Enlarged area of clouds persistence after applying QA60 band 

 

2.3 THRESHOLDING  

In applying the algorithm, users can transform the cloud probability map into a cloud mask by applying a 
threshold to the cloud probability map. The developers suggest a recommended threshold value of 40% to 
reduce the occurrence of cloud omission errors [4]. However, our study found an optimal threshold value of 
30% after applying different thresholds between 10% and 40%. We observed that some parts of the study 
area and small reservoirs, were detected as clouds and shadows, leading to their removal after applying 
10% and 20% thresholds. For instance, parts of the Vea dam were removed after using the 10% and 20% 
thresholds (Figure 3). 

Conversely, cloud footprints were persistent after using a threshold value of 40%. As such, a threshold value 

of 30% was applied to all the images used for the study. Figure 4 compares the April 2018 image at different 

cloud probability thresholds between 10% and 40%.  
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Figure 3. Vea dam after using the different cloud probability thresholds 
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Figure 4. Comparison of April 2018 images at different thresholds between 10% and 40% 

2.4 IMAGE ANALYSIS 

A total of 5 bands were used for the study (Table 1). Two spectral indices were computed using the pre-

process band collection. These spectral indices were mapped across the image collections for each month. 

This was done to enhance the classification accuracy of the model. The modified Normalized Water Index 

(MNDWI) and the Normalized Difference Vegetation Index (NDVI) were added as bands to all image 

collections and composited. The composited image collections formed the input data for the random forest 

algorithm. The MNDWI [5] and NDVI [6] are given as equations 1 and 2, respectively; 

 

𝑀𝑁𝐷𝑊𝐼 =  
𝐵3 − 𝐵11

𝐵3 + B11
                                                                                                                                           (1) 

𝑁𝐷𝑉𝐼 =  
 𝐵8 − 𝐵4

𝐵8 + 𝐵4
                                                                                                                                                       (2) 
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Table 1. Details of bands used for the study 

Name Scale Pixel Size 

(meter) 

Wavelength Description 

Sentinel 2A Sentinel 2B 

B2 0.0001 10  496.6nm 492.1nm Blue 

B3 0.0001 10  560nm 559nm Green 

B4 0.0001 10  664.5nm 665nm Red 

B8 0.0001  10  835.1nm 833nm NIR 

B11 0.0001 20  1613.7nm 1610.4nm SWIR 1 

 

2.5 MACHINE LEARNING CLASSIFICATION 

Despite having several machine learning algorithms for mapping, we utilized the Random Forest algorithm 

(RFA) to classify small reservoirs in the study area. The RFA was utilized over other machine learning 

algorithms such as support vector classifiers, NaiveBayes, and Classification and Regression Trees (CART) 

because It's an ensemble learning method that builds multiple decision trees and merges their outputs. 

Combining these trees reduces overfitting and improves accuracy compared to single decision tree models. 

During the training phase, the RFA generates an extensive array of decision trees and subsequently 

determines a class based on the highest frequency, thereby demonstrating resilience against overfitting [7], 

[8]. The RFA adheres to the fundamental principles of bootstrap aggregating (bagging). This method, from 

a training set alongside respective responses, consistently chooses random samples with replacement and 

constructs trees based on these selected samples. However, the distinction of RFA from the typical bagging 

technique lies in its utilization of a modified tree learning algorithm. This algorithm opts explicitly for a 

random subset of the available features at each potential split during the learning process. Following the 

training phase, predictions can be generated by aggregating the majority vote derived from the 

classification trees.  

2.6 GENERATING TRAINING SAMPLES AND TRAINING OF RFA 

The training dataset comprises a FeatureCollection containing a property that stores the class label, while 

other properties hold predictor variables. Class labels need to be integers starting from 0 in consecutive 

order. Also, remap() ensures class values are in sequential integers. Additionally, the predictor variables 

should be numeric. To train the RFA for our study, a reference sample dataset was generated for both water 

and non-water. First, using the geometry drawing tools, a high-resolution satellite base map in the GEE 

environment was used to sample water and non-water points and polygons. Class labels were then assigned 

to the water and non-water samples, where 0 and 1 represent non-water and water, respectively. Each 

feature collection was given a property called 0 and 1, signifying the properties for storing predictor 

variables of the training sample. Next, we generated at least 80-100 feature collections (encompassing 

points and polygons) for each class using the drawing tool in the code editor. Finally, we merged the water 

and non-water samples and divided it into training (80%) and testing (20%) datasets. 

Next, the RFA builds an individual decision tree for each sample. Utilizing the predictors (which comprise 

bands extracted from composited image collections), these trees collectively determine the classification of 
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each pixel as water or non-water through voting. Subsequently, each pixel is assigned the value that receives 

the most support from these decision trees. We employed the .smileRandomForest in the GEE environment 

with 100 trees and 4 randomly selected predictors per split. The water property was extracted from the 

classes and used as the class property. Also, four bands (B4, B5, B3, MNDWI) were used as the input 

properties. Figure 5a shows the RFA input, training, and output process, while Figure 5b shows the overall 

development of the RFA. The validation error matrix and overall accuracy were used to evaluate the 

performance of the RFA.  

The classified small reservoir extent for each month was cleaned by masking all unconnected pixels in the 

GEE environment. Also, a stream network was extracted from 1 arcsec Shuttle Radar Topographic Mission 

(SRTM) Digital Elevation Model (DEM) for the study area. In extracting the streams in the ArcGIS environment, 

all sinks in the DEM were filled using the fill tool. Flow direction and accumulation were then generated using 

the flow direction and flow accumulation tools, Finally, the map Algebra was used to extract the stream 

network of the study area. The extracted stream network was converted into a vector and imported into the 

GEE environment. Next, we masked all permanent waters using a 100m buffered stream network vector. 

The final classified reservoir extent was then converted into a vector and exported. Some features observed 

as unusual were manually removed. Also, all small reservoirs with a maximum extent of less than 0.09 hectors 

(ha) were removed [9]. This ensures that the final small reservoir extent does not include dugouts. 
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Figure 5. A. The input, training, and output process. B. Overall model development process of the RFA. 
 

 

2.7 MODEL VALIDATION AND PERFORMANCE EVALUATION 

We validated the classified small reservoir extent by comparing it to a high-resolution Google Earth image. 

This was done to assess the correlation between the actual and predicted small reservoir extents across the 

study area. We followed three major steps to validate the predicted small reservoir extents. First, 72 small 

reservoir extents were selected from the predicted dataset at varying sizes (ranging from 0.18 to 54.08). 

Next, the 72 small reservoir extents were digitized from Google Earth on different dates (November and 

December 2018, November and December 2019, and January and November 2020) based on their 

corresponding selected small reservoirs. This produced a validated small reservoir layer of the study area. 

Finally, the extent values of the observed and actual small reservoirs were compared to assess the lateral 

accuracy of the classified small reservoir extents.  

In assessing the performance of the RFA, we employed the confusion matrix and the F1-score. The confusion 

matrix shows various relevant measures such as overall accuracy (OA), ' 'Producer's Accuracy (PA), ' 'User's 
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Accuracy (UA), and the Kappa coefficient (Foody, 2002). The F1-score, on the other hand, denotes the 

accuracy of binary classification and is calculated based on precision and recall using equations (3) and (4). 

These metrics collectively aid in assessing the reliability and performance of the classification process. 

𝑃 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                                                                                                                    (3) 

𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                                                                             (4) 

Where, 

𝑃 is precision 

𝑅 is Recall 

𝑇𝑃  is True positives 

𝐹𝑃  is False positives 

𝐹𝑁 is False negatives 

2.8 CHARACTERIZATION OF SMALL RESERVOIRS 

2.8.1 Size characterization 

The predicted extents of small reservoirs were categorized into three size categories. Reservoirs with areas 

below 0.6 hectares were categorized as small, those ranging from 0.6 to 6 hectares were categorized as 

medium, and reservoirs exceeding 6 hectares were classified as large reservoirs.  

2.8.2 Landscape characterization 

Here, we categorized the extent of the predicted reservoirs by considering their location within the 

landscape. The locations of the small reservoirs contextualized, based on the hypothesis that there is an 

increasing trend in the storage capacity of the small reservoirs from upstream, midstream, and downstream 

of the landscape. Initially, the small reservoirs were categorized based on their flow accumulation capacity, 

considering their location in the landscape [10]. We generated a flow accumulation raster for the study area 

using the digital elevation model from the 1 arcsec Shuttle Radar Topographic Mission (SRTM) data. 

Subsequently, we extracted the cell value of the location of the maximum flow accumulation (approximated 

as the outlet position) for each small reservoir. These values were categorized into three intervals based on 

their standard deviations from the mean where values less than 2.8, between 2.8-5.6 as well as those greater 

than >5.6 were categorized as upstream, midstream, and downstream, respectively [9], [11].  
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2.8.3 Risk of falling dry 

The risk of falling dry defines the Probability of the small reservoir drying within a specific dry year (i.e., 

November 2018 to April 2019) of the entire study period (i.e., November 2018 to April 2023). Here, the 

months of water occurrence (Ranging from 1-to 30, which represents the number of months for the entire 

study period) was used to categorize the small reservoirs. Small reservoirs with less than 5 months of water 

occurrence were categorized under very high risk of falling dry. This is followed by those with water 

occurrence between 5-10 months, categorized as high risk of falling dry. Those between 10-15, 15-20, 20-

25, and above 25 months were categorized under medium, low, very low, and extremely low risk of falling 

dry, respectively. For the risk of falling dry for each dry year, the months of water occurrence ranged from 1-

6 months. Therefore, water occurrence for 1-6 months represented Very high, High, Medium, Low, Very low, 

and Extremely low risk of falling dry, respectively.  

We estimated the Probability of water occurrence (PWO) for each dry year as (equation 5)  

𝑃𝑊𝑂 =  
𝑛𝑖

𝑁
× 100                                                                                                                                                                (5) 

Where;  

𝑛𝑖 is number of months that water occurred in ith small reservoir 

𝑁 is total number of months per dry year or study period.  

The probability of risk of falling dry (PRF) is estimated as (equation 6): 

𝑃𝑅𝐹 = 100 − 𝑃𝑊𝑂                                                                                                       (6) 

 

2.9 DATABASE DEVELOPMENT  

We developed a geodatabase for the small reservoir extent using unique IDs. This was achieved after a 

series of different activities. First, we merged all monthly small reservoir extents for each dry year. Next, we 

dissolved all geometries into a single geometry for each year. The outputs for each year were then overlayed 

and dissolved to generate an overall small reservoir extent from 2018-2023. Then the multi polygon output 

was fragmented into individual polygons, and unique IDs were generated for each polygon. We then 

converted the coordinate system to Geographic WGS 84 CRS (EPSG:4326) and estimated the centroids. This 

was followed by extracting the longitudes and latitudes for each polygon. The final output is a reference 

layer. This layer was used to assign unique IDs and transfer longitude and latitude to the individual months 

of small reservoir extents for each dry year and saved in their respective subfolders.    
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3. RESULTS 
3.1 VALIDATION RESULTS 

Figure 6 presents the validation results demonstrating the correlation between the extent classified by RFA 

and the digitized extent obtained from high-resolution Google Earth imagery. This comparison resulted in 

an R-squared value of 0.98, indicating a strong correlation between the extent of 72 observed and classified 

small reservoirs. The surfaces of the 72 observed and classified small reservoir extents between 0.18ha and 

54ha were compared (Figure 6). Figure 7 further exhibits six specific instances of classified small reservoirs 

overlaid on Google Earth imagery at varying dates, offering a visual representation of the accuracy achieved 

in the classification process. Also, the overall accuracy ranged from 0.94 to 0.99, with November 2021 and 

April 2023 recording the highest and lowest scores, respectively (Table 2). Similarly, Kappa and F1 score 

ranged from 0.887 to 0.999 and 0.998 to 0.861 (Table 2).  

 

Figure 6. Scatter plot showing the correlation between the classified and digitized small reservoir extent from 
RFA and high-resolution Google Earth imagery, respectively 
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Figure 7. Comparison of the classified and digitized small reservoir extent from RFA and Google Earth Engine, 
respectively, at varying dates (NB: Green = Digitized, Red = Classified) 

 

3.2 ANALYSIS OF SMALL RESERVOIR EXTENT AND NUMBER 

The trend in the number of small reservoirs during each dry season indicates a consistent decline from 

November to April. For instance, in November 2018, there were 1,422 small reservoirs, which decreased to 

446 by April 2019 (Figure 8). This phenomenon could be ascribed to the escalating intensity of the dry 

season, which tends to peak during the dry months, notably in April of each consecutive dry year. Similarly, 

the trend of the surfaces of the small reservoirs declined as the months progressed, with intensification in 

April (Figure 9) throughout all the dry years. As such, due to progressive drying, most small reservoirs tend 

to reduce in size (Figure 10a) or completely dry up (Figure 10b) by April. The overall reservoir extents varied 

between 6738ha and 7368ha in November and, similarly, between 3013 hectares and 3647 hectares in April, 

spanning across the dry years (Figure 9). 

 

Conversely, there is a noticeable increase. The number of small reservoirs steadily rose as the dry years 

progressed, reaching its peak in November 2022 (Figure 8). The initial count of 1422 small reservoirs in 

November 2018 escalated to 2292 by November 2022. 
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Table 2. Model performance evaluation  

Dry year Month Overall 
Accuracy 

Kappa Producer 
Accuracy 

User 
Accuracy 

F1-Score 

2018–2019 Nov 99.10 0.991 95.30 99.71 0.991 
 Dec 99.41 0.999 96.02 98.10 0.985 
 Jan 99.37 0.990 96.24 99.95 0.987 
 Feb 99.12 0.972 94.91 98.42 0.960 
 Mar 98.65 0.977 93.99 98.05 0.952 
 Apr 98.01 0.961 91.17 96.81 0.926 
2019–2020 Nov 99.93 0.995 96.95 99.78 0.998 
 Dec 99.78 0.995 95.42 99.60 0.993 
 Jan 98.79 0.986 89.78 96.85 0.978 
 Feb 98.81 0.979 87.07 97.50 0.974 
 Mar 96.67 0.940 83.79 96.58 0.960 
 Apr 96.88 0.931 81.49 97.74 0.969 
2020–2021 Nov 99.92 0.980 97.59 99.76 0.990 
 Dec 98.87 0.988 98.91 99.69 0.987 
 Jan 98.40 0.966 96.28 99.87 0.979 
 Feb 97.77 0.947 95.72 98.90 0.962 
 Mar 97.98 0.939 93.91 98.71 0.943 
 Apr 96.81 0.921 91.97 96.79 0.948 

2021-2022 Nov 99.95 0.980 97.50 99.91 0.970 
 Dec 98.99 0.986 95.64 99.94 0.962 
 Jan 98.70 0.953 94.20 99.75 0.946 
 Feb 97.78 0.925 92.09 99.54 0.927 
 Mar 96.45 0.918 90.42 96.88 0.904 
 Apr 95.51 0.902 89.30 94.09 0.899 
2022-2023 Nov 99.94 0.983 97.14 99.78 0.982 
 Dec 98.99 0.987 96.40 99.81 0.940 
 Jan 99.90 0.966 94.75 97.90 0.930 
 Feb 97.81 0.929 94.09 97.49 0.881 
 Mar 96.87 0.905 92.70 95.93 0.874 
 Apr 94.79 0.887 87.90 92.41 0.861 
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Figure 8. Variations in the number of small reservoirs both between seasons and within a single season 
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Figure 9. Variations in the surface extent of small reservoirs across five distinct dry seasons. 
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Figure 10. (A) An example of a small reservoir holding water throughout the 2018-2019 dry year and (B) 
drying by the end of the 2018-2019 dry year  

3.3 CHARACTERIZATION OF RESERVOIRS  

3.3.1 SIZE  

Figure 11 illustrates the spatial distribution of small reservoirs categorized by size during the dry year of 

2018-2019. The larger reservoirs (> 6.0 hectares) are notably clustered in the Upper East region, surpassing 

the concentrations observed in other regions, as depicted in Figure 11. Following this, the Upper West and 

Northern regions exhibit lesser but still noticeable concentrations of large reservoirs. November 2018 

showcased a notable aggregation of small reservoirs (< 0.6 hectares). However, this concentration of small 

reservoirs gradually diminished from December 2018 to April 2019. 

The November classifications served as the basis for assessing the numerical variations in the number of 
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reservoirs categorized by size at the onset of the dry years. Across all the years, as depicted in Figure 12, 

small-sized reservoirs (< 0.6 hectares) dominated in number when compared to medium and large 

reservoirs. For instance, in November 2022, the count of small reservoirs ranged between 754 and 1349, 

surpassing the numbers of medium reservoirs (which increased from 478 to 746 in November 2021 with a 

slight decrease in November 2022) and large reservoirs (fluctuating between 174 and 235, with minor 

declines noted in November 2020 and 2022, respectively). 

Table 3 shows the total number of small reservoirs within our analysis at the beginning (November) and end 

(April) of each dry year. As previously highlighted, there was a consistent, gradual decline in reservoirs from 

the beginning to the end of each dry year. For instance, in November 2018, the number of small reservoirs 

decreased from 771 (54%) to 158 (11%) by April 2019 (Table 3), resulting in a total of 613 (43%) small 

reservoirs that had dried up. Similarly, medium-sized reservoirs decreased from 478 to 212, and large 

reservoirs reduced from 174 to 76 by the end of the 2018 dry season. Consequently, this led to a total of 

266 (19%) dried medium-sized reservoirs and 98 (7%) dried large-sized reservoirs during the dry year of 

2018-2019. 

They commenced the 2019-2020 dry season with a total count of 1592 reservoirs, which dwindled to 510 

reservoirs by the season's end in April 2020. This decline accounted for a total reduction of 1082 reservoirs, 

equivalent to approximately 68% of the initial reservoir count. Among the different size categories, small 

reservoirs experienced the most significant drying compared to medium and large reservoirs (Table 3). 

Specifically, 544 small reservoirs, constituting about 34% of the total reservoirs, dried up by the season's 

end, while 401 medium and 137 large reservoirs exhibited drying. 

Comparable patterns persist across the subsequent dry years (i.e., 2020-2021, 2021-2022, and 2022-2023), 

where a larger proportion of small reservoirs dried up by the end of the dry season in contrast to medium 

and large reservoirs. Notably, there is a consistent escalation in the number of dried-up reservoirs as each 

year advances. The 2022-2023 dry year recorded the highest cumulative count of dried-up reservoirs, 

reaching 1567 by the end of the dry season (Table 3). 
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Figure 11. Spatial distribution of small reservoirs by size for the 2018-2019 dry year 
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Table 3. Number of reservoirs at the beginning and end of each dry year 

Beginning of Dry season (November) 

Size 2018 % 2019 % 2020 % 2021 % 2022 % 

Small 771 54.18 754 47.36 919 52.28 969 49.69 1349 58.86 

Medium 478 33.59 627 39.38 633 36.01 746 38.26 724 31.59 

Large 174 12.23 211 13.25 206 11.72 235 12.05 219 9.55 

Total 1423 100 1592 100 1758 100 1950 100 2292 100 

 

End of Dry season (April) 

Size 2019 % 2020 % 2021 % 2022 % 2023 % 

Small 158 11.10 210 13.19 258 14.68 268 13.74 293 12.78 

Medium 212 14.91 226 14.21 258 14.68 248 12.72 351 15.31 

Large 76 5.34 74 4.65 76 4.32 65 3.33 81 3.53 

Total 446 31.34 510 32.04 592 33.67 581 29.79 725 31.63 

 

Dried Reservoirs (Change)  
2018-19 % 2019-20 % 2020-21 % 2021-22 % 2022-23 % 

Small 613 43.08 544 34.17 661 37.61 701 35.95 1056 46.07 

Medium 266 18.69 401 25.19 375 21.33 498 25.54 373 16.27 

Large 98 6.89 137 8.61 130 7.39 170 8.72 138 6.02 

Total 977 68.66 1082 67.96 1166 66.33 1369 70.21 1567 68.37 
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Figure 12. Number of reservoirs by size at the beginning of dry year 

3.3.2 LANDSCAPE  

The Reservoirs were categorized based on their positioning in the landscape and size. Among the categorized 

reservoirs, approximately 50% (1534) were situated in the midstream, with about 30% (934) found in the 

downstream (Table 4). Approximately 20% of the reservoirs were located in the upstream. Figure 13 illustrates 

the spatial distribution of small reservoirs based on their landscape positioning. Meanwhile, Figure 13 indicates 

the prevalence of small-sized reservoirs (<0.6ha) in the upstream (555) and midstream (873). Moreover, the 

downstream exhibited a higher presence of medium-sized reservoirs (464). Notably, while there were no large 

reservoirs upstream, the midstream and downstream regions recorded 81 and 246 large reservoirs, 

respectively, as depicted in Figure 14.  
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Figure 13. Spatial distribution of small reservoirs by position in landscape 

 

Table 4 4. Position of small reservoirs in the landscape 

Landscape Position Count Percent 

Upstream 611 19.84 

Midstream 1534 49.82 

Downstream 934 30.33 

Total 3079 100 



23 
 

 

Figure 14. Small reservoir characteristics due to Size and landscape position 

3.3.3 RISK OF FALLING DRY  

The study assessed the probability of small reservoirs drying up during the study duration and individual dry 

years. Overall, findings suggest that approximately 1506 small reservoirs, constituting about half of the total, 

face a very high risk of drying up (Table 5). Additionally, approximately 454 (15%) and 312 (10%) small reservoirs 

are classified as having high and medium risk of drying up, respectively. However, there are 245 (8%), 196 (6%), 

and 366 (12%) small reservoirs identified as having low, very low, and extremely low risks, respectively, of drying 

up. 

During each specific dry year, a significant portion of the reservoirs, totaling 391, exhibit an extremely low risk 

of drying up in the 2018-2019 dry period. Subsequently, roughly 284 reservoirs (21%) are identified as having 

a very high risk of drying up. Similar trends persist in subsequent dry years, such as 2019-2020, 2020-2021, and 

2021-2022, where the majority of small reservoirs are classified as having an extremely low risk of drying up. 

However, in the 2022-2023 dry year, a substantial portion (33%) of small reservoirs is observed to be at a very 

high risk of drying up, while around 25% are noted to have an extremely low risk of drying up. 

Reservoirs were assessed for their likelihood of drying based on their size. Surprisingly, most reservoirs, 

regardless of their size, fell into the category of very high risk for drying up. For example, roughly 50% (164) of 

the large reservoirs face a very high risk of drying up. In contrast, comparatively smaller percentages—around 

9%, 5%, and 17%—of large reservoirs are classified as having low, very low, and extremely low risks of drying up, 

respectively (as detailed in Table 6). However, when comparing sizes, small reservoirs exhibited the highest 
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proportion, approximately 53%, falling within the very high-risk of drying up. 

Concerning the risk of drying based on their landscape position, it's notable that most reservoirs, regardless of 

their landscape placement, tend to face a very high risk of drying up. Specifically, approximately 56%, 50%, and 

52% of small reservoirs were identified as having a very high risk of drying up, respectively (as outlined in Table 

7). The remaining small reservoirs were distributed across various risk levels within the landscape, ranging from 

high to extremely low. 
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Table 5. Risk of falling dry for each dry year 

Risk of falling 

dry 

 Overall  2018-2019  2019-2020  2020-2021  2021-2022  2022-2023 

 
 Count %  Count %  Count %  Count %  Count %  Count % 

Very high  1506 48.91  284 21.35  393 25.37  424 25.68  438 23.46  748 33.11 

High  454 14.75  257 19.32  294 18.98  180 10.9  273 14.62  188 8.32 

Medium  312 10.13  147 11.05  114 7.36  281 17.02  266 14.25  391 17.31 

Low  245 7.96  135 10.15  173 11.17  170 10.31  161 8.62  210 9.31 

Very low  196 6.37  116 8.72  122 7.88  82 4.97  231 12.37  165 7.3 

Extremely low  366 11.89  391 29.41  453 29.24  514 31.13  498 26.67  557 24.66 

NB: Overall risk of failing is calculated using all 30 months for the 5 dry years compared to 6 months for each dry year 
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Table 6. Risk of falling dry due to Size 

Risk of falling dry  Large  %  Medium  %  Small  %  

Very high  164  50.15  543  49.36  873  52.85  

High  37  11.31  137  12.45  206  12.47  

Medium  26  7.95  114  10.36  172  10.41  

Low  30  9.17  75  6.82  140  8.47  

Very low  15  4.59  76  6.91  105  6.36  

Extremely low  55  16.82  155  14.09  156  9.44  

Total  327  
 

 1100  
 

 1652  
 

 

 

Table 7. Risk of falling dry due to position in Landscape 

Risk of falling 

dry 

 Upstream  %  Midstream  %  Downstream  %  

Very high  340  55.65  756  49.28  484  51.82  

High  66  10.8  183  11.93  131  14.03  

Medium  59  9.66  169  11.02  84  8.9  

Low  44  7.2  115  7.51  86  9.21  

Very low  37  6.06  101  6.58  58  6.21  

Extremely low  65  10.64  210  13.69  91  9.74  

Total  611  
 

 1534  
 

 934  
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4. CONCLUSIONS 
The comprehensive analysis of small reservoir dynamics and their vulnerability to drying revealed substantial 

insights into their characteristics and trends across various parameters. The validation results demonstrated a 

robust correlation between the extent of observed and classified small reservoirs, with an R-squared value of 

0.98. Moreover, the temporal patterns observed during dry seasons unveiled a consistent decline in the number 

and size of small reservoirs from November to April, attributing this phenomenon to the escalating intensity of 

the dry season, particularly in April. This progressive drying trend was evident across multiple dry years, 

resulting in a reduction in reservoir extents between November and April, between 6738ha and 7368ha in 

November and between 3013 ha and 3647 ha in April. Conversely, examining trends across dry years, there 

was a noticeable increase in small reservoirs, peaking in November 2022 from an initial count of 1422 in 

November 2018. In terms of size, small-sized reservoirs (< 0.6 hectares) dominated across all years, 

outnumbering medium and large reservoirs. 

The evaluation of reservoirs based on landscape positioning highlighted distinct spatial distributions, with 

midstream locations accommodating around 50% of the categorized reservoirs, followed by downstream areas 

(30%) and upstream (20%). Moreover, different sizes of reservoirs exhibited varying distributions across these 

landscape positions, with small-sized reservoirs prevailing in upstream and midstream areas. At the same time, 

downstream regions had a higher presence of medium and large reservoirs. 

Assessing the risk of drying across different parameters revealed that approximately half of the small reservoirs 

faced a very high risk, with smaller proportions at high, medium, low, very low, and extremely low risks of drying. 

Notably, the consistency in the decline of small reservoirs by the end of each dry year was evident, with a greater 

proportion of small reservoirs drying than medium and large reservoirs. Furthermore, specific dry years 

exhibited varying proportions of dried-up reservoirs, with the 2022-2023 dry year recording the highest 

cumulative count of dried-up reservoirs. Remarkably, despite variations in size and landscape positioning, most 

reservoirs faced a very high risk of drying, indicating a pervasive vulnerability among these small reservoirs 

irrespective of their characteristics. 

In conclusion, this comprehensive analysis provides valuable insights into the dynamics of small reservoirs, 

highlighting their vulnerability to drying, consistent patterns across dry seasons and years, and the influence of 

landscape positioning and size on their susceptibility to dryness. These findings can serve as a foundational 

understanding for effective water resource management strategies, particularly in mitigating the impact of 

drying among small reservoirs in the studied region. 
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5. APPENDIX 1 
 

Table A 1. Summary of various methods tested in the study 

Method Date Source Pros Cons 

Fitoprinciple 
 
 
 
 

January 30, 
2020 

fitoprincipe/gee-composite: Make cloud-
free Landsat and Sentinel 2 composites 
using Google Earth Engine Python API 
(github.com)  

Able to filter clouds using cloud cover 
percentage to filter the collection 
 
 
Choose whether to mask the clouds out or not 
based on the maximum score for a given "day of 
year.",  
Maximum score for the best satellite in the given 
period, Minimum score for the pixels next to 
clouds (mask in general),  
Maximum score to the image with fewer masked 
pixels 
Index, and the maximum score for pixels with a 
given vegetation index (momentarily set to 0.8) 
 

'Couldn't separate some shadows 
from water pixels. 
 
Transparent clouds are not 
removed. 

Hollstein et al's 
2016 

2016 https://doi.org/10.3390/rs8080666  Categorizes cirrus, opaque, and shadows  
 
Categorizes bad and suitable pixels into a binary 
option (0,1) 
 
Uses a decision tree to select suitable pixels from 
bad pixels. 
 
Returns suitable pixels per scene 
 

Detects some shadows as water 
pixels and removes them 
 
 
Footprints of clouds are not 
removed.  
 
 

Aggregating 
cloud-free 
sentinel-2 

September 20, 
2019 

ISPRS-Annals - AGGREGATING CLOUD-
FREE SENTINEL-2 IMAGES WITH GOOGLE 
EARTH ENGINE (copernicus.org)  

It does not infer pixels based on statistical or 
machine learning models but makes use of 
posterior information, which 

Not able to remove transparent 
clouds 
 

https://github.com/fitoprincipe/gee-composite
https://github.com/fitoprincipe/gee-composite
https://github.com/fitoprincipe/gee-composite
https://github.com/fitoprincipe/gee-composite
https://doi.org/10.3390/rs8080666
https://isprs-annals.copernicus.org/articles/IV-2-W7/145/2019/
https://isprs-annals.copernicus.org/articles/IV-2-W7/145/2019/
https://isprs-annals.copernicus.org/articles/IV-2-W7/145/2019/
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images (Schmitt 
et al, 2019)  

was measured by Sentinel-2 
 
 
While being able to generate mostly cloud-free 
images even 
for severely cloud-affected regions of interest 
(ROIs), the 
method always strives to create as clean images 
and 
artifact-free as possible. 
 
Using ' 'GEE's cloud computation infrastructure, 
it can efficiently produce cloud-free images for 
large numbers of 
ROIs and time frames in a parallel manner. 

Images with more than 75% 
clouds are not corrected. 
 
User Memory demanding 
 
Orbit limits on the composites are 
visible. 

Sentinel-2 
Cloud Masking 
with s2cloudless 

June 1, 2022 Sentinel-2 Cloud Masking with 
s2cloudless  |  Google Earth 
Engine  |  Google for Developers  

Clouds are identified from the S2 cloud 
probability dataset (s2cloudless), and shadows 
are defined by cloud projection intersection with 
low-reflectance near-infrared (NIR) pixels. 
 
 
 

In some cases, it is still possible to 
spot orbit limits on the 
composites. 

 

 

https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless
https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless
https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless
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Figure A 1. Output of the fitoprincipe cloud removal technique. Enlarged areas showing part of some reservoir extents masked out as clouds with some reservoirs 
completely removed. 
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Figure A 2. The output of the Hollstein et al. (2016) cloud removal technique. The enlarged area shows part of some reservoir extents masked out as clouds with 
some reservoirs completely removed, as well as persistent cloud footprints in some areas. 
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Figure A 3. The output of the Schmitt et al. (2019) cloud removal technique. Enlarged areas showing part of the study area contaminated by cloud
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