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Summary 

The current report presents a machine learning model developed to predict malaria prevalence 

based on rainfall patterns, specifically tailored to different regions within Senegal. The developed 

model takes into account the varying climate conditions across regions to provide a more 

localized and accurate prediction. The primary input parameters used for prediction include 

rainfall, month, and year, allowing the model to capture each region's seasonal variations and 

trends. This research aims to enhance the precision of malaria predictions, contributing to more 

effective and targeted public health measures. The model is designed to provide future forecasts, 

offering valuable insights into early warning signals to help anticipate and mitigate the impact of 

malaria outbreaks. This proactive approach enables authorities and healthcare professionals to 

prepare and implement preventive measures in advance, potentially reducing the severity of 

malaria-related issues and aiding in the allocation of resources where they are most needed. By 

tailoring the prediction model to the unique characteristics of each region in Senegal, the current 

research addresses the localized nature of malaria outbreaks, recognizing that factors such as 

climate, geography, and environmental conditions can significantly influence the prevalence of 

malaria. The integration of predictive analytics and models in public health initiatives allows for 

a more strategic and responsive approach to malaria management, ultimately contributing to the 

overall well-being of the affected communities. This report includes an explanation of the 

methodology used for the development of the prediction model, along with the results obtained 

and their implications for public health in Senegal. 
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1. Introduction 

Malaria is a vector-borne infectious disease, typically transmitted through infected Anopheles 

mosquitoes, and has long been an embedded public health challenge, particularly in the Global 

South. Malaria prevalence and intensity are intricately tied to various environmental and climatic 

factors (Kulkarni et al., 2022; Samarasekera, 2023). The aftermath of water-related hazards often 

triggers the spread of vector-borne diseases like malaria (Coalson et al., 2021; Mouchet et al., 

1996). Specifically for mosquito-borne diseases, the number of yearly reported cases at the global 

scale has risen by an estimated 247 million malaria cases, marking 0.6 million deaths 

(https://www.who.int/news-room/fact-sheets/detail/malaria). The nexus between malaria and 

climate has never been more critical as dwindling rainfall and rising global temperatures become 

increasingly erratic due to human-induced climate change. This evolving dynamic has potential 

consequences for regions where malaria is already endemic and areas outside the disease's 

traditional range. By diving into the climatic determinants of malaria transmission, such as 

temperature, precipitation, and relative humidity, and examining the complex interplay between 

them (Bationo et al., 2021; Santos-Vega et al., 2022; Wang et al., 2022), we can anticipate 

potential shifts in disease patterns and devise strategies to take preventive measures. This 

exploration aims to underscore the pressing need for collaborative, interdisciplinary action in 

adapting to and mitigating the impacts of climate on malaria and, by extension, global public 

health. This study adds a new dimension to a decade of CGIAR research on malaria led by IWMI 

(Mutero et al., 2005; Teklu et al., 2010;  Kibret et al., 2015; Kibret et al., 2021). 

Malaria has long presented a significant public health issue in many tropical and subtropical 

regions, and its incidence and distribution are especially relevant in Senegal, where the disease 

remains a primary health concern (Sallah et al., 2021). As the global community faces the 

multifaceted consequences of climate change, understanding its influence on malaria 

transmission within Senegal becomes essential. Senegal has a unique combination of Sahelian, 

Sudanian, and Guinean climate zones; even slight alterations in temperature and precipitation 

can produce marked effects on mosquito breeding habitats and malaria transmission cycles. 

These regional trends explore the intricate relationship between climatic variables and malaria 

https://www.who.int/news-room/fact-sheets/detail/malaria
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dynamics in Senegal (Diouf et al., 2013; Jampani et al., 2023). Factors such as changing rainfall 

patterns, increasing temperatures, and altered humidity levels can lead to shifts in disease 

prevalence, potentially causing outbreaks in previously low-transmission areas and altering peak 

transmission seasons (Dieng et al., 2020; Diouf et al., 2017; Ndiath et al., 2012). By studying these 

specific climatic impacts on malaria transmission in Senegal, it becomes evident that targeted, 

region-specific interventions are crucial. This understanding will guide policymakers, researchers, 

and public health officials in crafting adaptive, resilient strategies that safeguard communities 

from the augmented threats of a changing climate. In Senegal, the rainy season usually lasts from 

June to October, coinciding with a surge in malaria cases (Figure 1). Further, high humidity and 

increased rainfall provide ideal breeding conditions for mosquitoes, leading to an upsurge in 

malaria transmission.  

Figure 1: Distribution of rainfall variability and malaria prevalence for entire Senegal. 

Over the past decade, various efforts have been made to develop effective interventions and 

preventive measures to mitigate the impact of malaria on public health in Senegal (Bicout et al., 

2015; Diouf et al., 2017; Lucas et al., 2021). However, accurately predicting malaria outbreaks 

remains complex due to the influence of various environmental factors, particularly rainfall 
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patterns. To address this challenge, we leveraged advanced machine learning techniques to 

develop robust malaria prediction models that could provide early warning signals and prevent 

the spread of malaria. By grasping the links between rainfall patterns and malaria prevalence, we 

aim to forecast the number of malaria cases for the next three months across different regions 

in Senegal.  

2. Data collection and processing 

The monthly and province-wise dataset of recorded malaria cases was obtained from Senegal's 

National Malaria Control Program (NMCP - PNLP in French); the data collection information on 

malaria cases can be obtained from https://pnlp.sn/. When looking at the overall dataset, time 

series data for the period 2009 to 2021 are supplied in a tabular format Excel sheet in numerical 

format for 14 provinces of Senegal. When we visualize the dataset, it shows the non-linear 

relationship between the data variables. Each region has more than 150 data rows with rainfall 

and malaria cases between 2009 and 2021. It covers climatic and health data for 14 different 

regions and runs from 2009 to 2021. The two crucial elements assembled into this dataset are 

the historical rainfall data for each region and the associated number of malaria cases reported 

in each region. The combination of these variables provides a comprehensive picture of how 

environmental elements like rainfall interact with the prevalence of malaria cases.  

The satellite-derived rainfall estimates are from CHIRPS (Climate Hazards Group InfraRed 

Precipitation with Station) data, processed to obtain monthly rainfall trends and validated with 

country-specific station rainfall datasets. The malaria data is also pre-processed to filter any noise 

or outliers. Both datasets are at a monthly temporal scale, and the spatial scale is provincial for 

Senegal. Further, lag time is calculated given the time between rainfall events and potential 

spikes in malaria (due to the mosquito life cycle and human incubation period), creating lag 

variables (e.g., rainfall data from the previous month). 

3. Machine Learning Model Selection 

Selecting a suitable machine learning algorithm is pivotal to the model's success in malaria 

prediction modeling. First, we evaluated whether the prediction task is a classification, 
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regression, or clustering problem. Malaria prediction likely involves binary classification (malaria 

outbreak or not), making classification algorithms like Random Forest, Support Vector Machines 

(SVM), and Gradient Boosting as potential choices. When working with datasets, it is crucial to 

analyze their size, dimensionality, and features. Gradient Boosting and Random Forest models 

have proven to perform well in large datasets. For high-dimensional data, dimensionality 

reduction techniques may be beneficial. In addition to that, it is crucial to understand the 

distribution of data classes. If the dataset is imbalanced, where one class is significantly more 

prevalent than the others, algorithms like Random Forest and SVM can handle it, or techniques 

like oversampling or under-sampling can be considered. It is also vital to consider feature 

importance, especially if there is prior knowledge about which features are most relevant to 

prediction. Algorithms like Random Forest offer built-in feature importance scores, aiding 

interpretability. However, one needs to decide the balance between model interpretability and 

predictive performance. While decision trees and Random Forest are interpretable, deep 

learning models may provide higher performance at the cost of interpretability. Lastly, it is crucial 

to identify the presence of noisy data or outliers in the dataset. Robust algorithms like Random 

Forest and SVM can handle noisy data better than other models. 

Python is a widely regarded language for developing machine learning models for several 

compelling reasons. TensorFlow, PyTorch, sci-kit-learn, and Keras are some of the many libraries 

and frameworks that are part of Python's vast ecosystem, specifically designed for machine 

learning and data science. These libraries simplify the machine learning workflow by providing 

pre-built tools and job functions, including data pre-processing, model creation, and evaluation. 

Python is a simple and readable language, making it a brilliant choice for novice and experienced 

developers. Its syntax is like everyday English, making writing and understanding code easy. It is 

valuable when working with complex machine learning algorithms and models. Python's 

flexibility also makes integrating with other technologies and languages easy. The ability to build 

comprehensive machine learning pipelines, deploy models, and access data depends on this 

interoperability. Overall, Python is the leading language enabling developers to effectively 

leverage the potential of artificial intelligence and data science due to its extensive environment, 

readability, versatility, and robust community support. 



 
 

9 

Machine learning encompasses various paradigms, including supervised, unsupervised, and 

linear learning methods, each serving distinct purposes. The most popular method uses labeled 

data to guide the algorithm’s learning. In this paradigm, the model is trained using a dataset 

containing input data and target labels, allowing it to make predictions or categorize data that 

has not yet been seen. Applications for supervised learning can be found in processes like 

sentiment analysis, spam detection, and image identification. While dealing with unlabeled data, 

unsupervised learning looks for patterns, structures, or groupings within the data. It is 

comparable to providing the program with a group of things without identifying them. Clustering 

and dimensionality reduction are frequent methods used in unsupervised learning. Applications 

like consumer segmentation and anomaly detection make use of it. 

As the name implies, linear learning algorithms are a type of algorithm that represent 

relationships between variables as linear equations. For example, the straightforward yet 

effective linear technique of linear regression is used to forecast numerical results. It presumes 

a linear relationship exists between the input features and the desired outcome. For binary 

classification problems, however, linear classifiers like logistic regression are employed. These 

techniques are preferred when the underlying data relationships are straightforward and can be 

well represented by linear functions. 

4. Random Forest Algorithm 

Random forest is one of the best algorithms for regression problems. While selecting an 

appropriate algorithm, we need to understand the dataset well because sometimes it will be 

small or huge. According to this dataset amount, we cannot go to deep learning models to build 

this model because this dataset is too small. As well as the dataset having missing values, as a 

solution for that, we can use the random forest algorithm because it helps handle missing values. 

Random Forest provides excellent feature importance insights, high accuracy, robustness, and 

resistance against overfitting. It does, however, come with more complexity and less 

interpretability. After considerable deliberation and analysis, we strategically chose to use the 

Random Forest algorithm for predictive modeling. The aspects of Random Forest can handle both 

classification tasks and numerical features, its feature importance insights, and its power to 
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mitigate overfitting. This choice was determined after analyzing the advantages and 

disadvantages of several algorithms and considering variables like predicted accuracy, 

interpretability, and computing efficiency.  

5. Model development and performance 

Machine learning models such as Random Forest are used to perform predictive modeling of 

malaria cases based on rainfall data. Two model validation methods are employed: i) splitting the 

data to train and test the datasets and ii) random splitting, where random years were chosen for 

training and testing instead of sequential. Testing of the model that is trained on both these 

approaches is to assess the model's final performance. The model developed with parameter 

initialization by starting with a set of initial parameters for the Random Forest, including the 

number of trees, depth of trees, and criteria for splitting. The model's performance on the test 

dataset is evaluated using R-squared (to determine the proportion of variance explained by the 

model). We integrate the model into the AWARE (Early warning to Early action) platform only 

after the model's performance is satisfied. The model is updated based on continuous data 

updates as received to improve the model's predictions over time. As more recent data becomes 

available, retrain and update the model to ensure its continued accuracy and relevance. The 

respective machine learning approaches of Python code are also incorporated in this report 

below. 

5.1. Import Libraries 

We imported some libraries for data analysis and machine learning in Python. We are 

setting up Pandas, NumPy, Matplotlib, Scikit-Learn, and date time in our Python environment for 

data pre-processing, analysis, and potentially machine learning tasks. 
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5.2. Import Data Frame   

Used Pandas to read two Excel files, ‘RainfallSenegal.xlsx’ and ‘SenegalMalaria.xlsx’ and stored 

their data in Data Frames named Rainfall data and Malaria data, respectively. The random forest 

regression algorithm was used from Scikit-Learn to build a machine-learning model and evaluate 

its performance across regions. 

The dataset path should be changed according to the dataset: 

 

The malaria data frame and adding new columns Year and Months: 

 
 

Creating a new Data Frame for each region: 

 
 

import pandas as pd 

import numpy as np 

import math   

import matplotlib.pyplot as plt 

%matplotlib inline 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.model_selection import train_test_split 

import seaborn as sns 

import plotly.graph_objects as go 

from scipy.interpolate import splev, splrep 

import datetime 

from datetime import timedelta 

RainFall_data = pd.read_excel("Filepath\\RainfallSenegal.xlsx") 

Malaria_data = pd.read_excel("Filepath\\SenegalMalaria.xlsx") 

Malaria_data['Years_Month'] = pd.to_datetime(Malaria_data['Years'], 
format='%Y/%m/%d') 

Malaria_data['Year'] = 
pd.DatetimeIndex(Malaria_data['Years_Month']).year 

Malaria_data['Month'] = 
pd.DatetimeIndex(Malaria_data['Years_Month']).month 

Region_DataSet = pd.DataFrame() 

Region_DataSet['Years'] = Malaria_data['Year'] 

Region_DataSet['Mon'] = Malaria_data['Month'] 

Region_DataSet['RainFall'] = RainFall_data['Diourbel'] 

Region_DataSet['Malaria'] = Malaria_data['DIOURBEL'] 
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5.3. Models Building 

5.3.1. Year-wise Split model training 

 

 

 

 

 

 

 

Region_DataSet['yearWithMonth'] = Region_DataSet['Years'].astype(str) 
+"-"+ Region_DataSet['Mon'].astype(str) 

Region_DataSet = Region_DataSet[Region_DataSet['Years']>2007] 

X_Year_train = Region_DataSet[Region_DataSet['Years']<2019] 

Y_Year_train = Region_DataSet[Region_DataSet['Years']>=2019] 

sample = Y_Year_train['yearWithMonth'] 

y_train = X_Year_train['Malaria'] 

x_train = X_Year_train.drop(['Malaria','yearWithMonth'], axis=1) 

y_test = Y_Year_train['Malaria'] 

x_test = Y_Year_train.drop(['Malaria','yearWithMonth'], axis=1) 

 

model_1 = RandomForestRegressor(n_estimators = 10, random_state = 3, 
max_depth = 5, criterion ='poisson',min_samples_split = 1, 
1.0).fit(x_train,y_train) 

acc = model_1.score(x_test,y_test) 

print('2008 to 2021 Accuracy :',acc) 

y_pred = model_1.predict(x_test) 

line1_color = 'lightcoral' 

line2_color = 'chocolate' 

 

plt.figure(figsize=(15,5)) 

plt.plot(sample, y_test, label='Actual', color=line1_color) 

plt.plot(sample, y_pred, label='Predicted', color=line2_color) 

plt.title('Actual and Predicted') 

plt.legend(['Actual', 'Predicted']) 

plt.xticks(rotation=90) 

plt.show() 
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5.3.2. Random Split model training 

X_region = Region_DataSet.drop(['Malaria'], axis=1) 

Y_region = Region_DataSet['Malaria'] 

 

X_region_train, X_region_test, Y_region_train, Y_region_test = 
train_test_split(X_region, Y_region, test_size=0.1, random_state=42) 

 

Sample_date = X_region_test['yearWithMonth'] 

X_region_train = X_region_train.drop(['yearWithMonth'], axis=1) 

X_region_test = X_region_test.drop(['yearWithMonth'], axis=1) 

 

model_2 = RandomForestRegressor(n_estimators = 10, random_state = 3, 
max_depth = 5, criterion ='poisson',min_samples_split = 1, 

                              min_samples_leaf = 1, max_features = 
1.0).fit(X_region_train,Y_region_train) 

acc = model_2.score(X_region_test,Y_region_test) 

print('2008 to 2018 Accuracy :',acc) 

 

y_region_pred = model_2.predict(X_region_test) 

 

import matplotlib.pyplot as plt 

# Sample data - predicted and actual values 

 

# Set the width of the bars 

#bar_width = 0.45 

plt.figure(figsize=(20, 8)) 

# Create an array of indices for the x-axis ticks 

#x = range(len(predicted)) 

line1_color = 'lightcoral' 

line2_color = 'chocolate' 

# Plotting the bars 

plt.bar(X_region_test['Years'], Y_region_test, align='center', 
label='Predicted',color=line1_color) 

plt.bar(X_region_test['Years'], y_region_pred, align='edge', 
label='Actual',color=line2_color) 

 

# Set labels and title 

plt.xlabel('Years') 

plt.ylabel('Cases') 

plt.title('Predicted vs Actual Values')  

plt.xticks(x_test_data['years&Month'])  # Set x-axis tick labels 

 

# Add legend 

plt.legend() 

 

# Display the plot 



 
 

14 

6. Evaluation Matrices Explanation 

When evaluating the performance of a model, it is crucial to select appropriate metrics based on 

the nature of the problem. One standard metric is R-squared, which measures the proportion of 

the variance in the target variable and can be explained by the model's predictors. A higher value 

of R-squared indicates a better fit of the developed model. It is also crucial to evaluate the 

model's sensitivity to changes in specific variables, particularly when analyzing the impact of 

climate factors on the transmission of diseases such as malaria. Additionally, considering the 

model's behavior on different spatial and temporal scales, such as local, regional, national, 

monthly, or annually, can provide valuable insights into its effectiveness. To present the results 

of model training, two types of approaches were used: year-wise split and random split models. 

The corresponding accuracy of these models at the province level is presented in Table 1, while 

Figures 2 and 3 illustrate their performance.  

Table 1: The province-wise model accuracies for Senegal of the Year-wise split and 

Random split models 

Region Year-wise Split 
Model Accuracy 

Random Split  
Model Accuracy 

Dakar 0.87 0.95 

Diourbel 0.62 0.82 

Fatick 0.62 0.97 

Kaffrine 0.83 0.95 

Kaolack 0.81 0.88 

Kedougou 0.91 0.96 

Kolda 0.92 0.95 

Louga 0.93 0.69 

Matam 0.89 0.71 

Saint-Louis 0.95 0.87 

Sedhiou 0.94 0.53 

Tambacounda 0.92 0.92 

Thies 0.80 0.74 

Ziguinchor 0.90 0.82 
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Figure 2: Province-wise results of malaria cases of the Year-wise Split model predictions for Senegal. 
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Figure  3:  Province-wise results of malaria cases of the Random Split model predictions for Senegal. 
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7. Model Results And Data Interpretation 

Interpreting data on rainfall-induced malaria prevalence requires a nuanced understanding of 

the relationship between precipitation patterns and mosquito breeding habitats (Figure 2 and 

Figure 3). Rainfall creates suitable breeding grounds for the Anopheles mosquitoes – the primary 

malaria vectors – in the form of puddles, waterlogged areas, and freshwater collections. As such, 

an increase in rainfall can often lead to a surge in mosquito populations and, subsequently, a rise 

in malaria transmission. However, it is crucial to differentiate between moderate rains, which 

provide ideal breeding grounds, and heavy downpours, which can wash away larval habitats. 

Moreover, the latency between increased rainfall and a subsequent rise in malaria cases – 

typically around one to two months – must be factored into data interpretations. It is also 

essential to consider the local ecosystem, infrastructure, and interventions in place. For instance, 

effective water management or rapid response mechanisms can mitigate the impact of increased 

rainfall on malaria transmission. When examining graphs or datasets, sharp spikes in malaria 

cases following periods of consistent or increased rainfall might be observed. However, the 

interpretation must be contextual, considering regional specificities, existing health 

infrastructure, and any other external interventions or events. The predictive modeling results 

are displayed for the next three months, considering historical rainfall and malaria prevalence 

trends (Figure 4). 

 

8. Lag Time calculation 

To calculate the lag time for the first month, the initial rows were removed from the malaria 

dataset in the region, and the last row was excluded from the rainfall dataset. After this, the 

dataset was split into training and testing sets, and a specific Random Forest regression model 

was developed and saved. 
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import pandas as pd 
import numpy as np 
from sklearn.ensemble import RandomForestRegressor 
from sklearn.metrics import r2_score 
import pickle 
 
malariaSet_1 = malaria_data['DIOURBEL'] 
otherSet_1 = Rainfall_data[['YEAR','MON','DIOURBEL']] 
 
print(malariaSet_1) 
print(otherSet_1) 
 
malariaSet_1 = malariaSet_1.drop(labels=0, axis=0) 
otherSet_1 = otherSet_1.drop(labels=155, axis=0) 
 
print(malariaSet_1) 
print(otherSet_1) 

X_region_test = otherSet_1[otherSet_1['YEAR']>=2018] 
X_region_train = otherSet_1[otherSet_1['YEAR']<2018]   
 
print(X_region_test) 
print(X_region_train) 
 
Y_region_train = malariaSet_1.iloc[:len(X_region_train.MON)] 
Y_region_test = malariaSet_1.iloc[len(X_region_train.MON):] 
 
print(Y_region_train) 
print(Y_region_test) 
 
model_1 = RandomForestRegressor(n_estimators = 19, random_state = 16, 
max_depth = 9, criterion ='absolute_error',min_samples_split = 5, 
                              min_samples_leaf = 20, max_features = 
'log2').fit(X_region_train,Y_region_train).fit(X_region_train,Y_region
_train) 
acc = model_1.score(X_region_test,Y_region_test) 
print('First LagTime Accuracy :',acc) 
 
pickle.dump(model_1, open('DIOURBEL/1_month_model.pkl','wb')) 
 

print('First Malaria Future Prediction',model_1.predict(df)) 
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To account for a two-month delay, first exclude the first and second rows from the malaria data 

set in the region, and next, exclude the last two rows from the rainfall data set. Finally, the data 

set is split for training and testing, and a specific Random Forest regression model is developed. 

 

 

 

To account for a third-month lag time, remove the first, second, and third rows of the malaria 

dataset and the last three rows of the rainfall dataset. Then, the dataset was split for training and 

testing purposes, and a specific Random Forest regression model was further developed. 

malariaSet_2 = malaria_data['DIOURBEL'] 
otherSet_2 = Rainfall_data[['YEAR','MON','DIOURBEL']] 
 
print(malariaSet_2) 
print(otherSet_2) 
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Saving model PKL files of monthly lag times: 

malariaSet_3 = malaria_data['DIOURBEL'] 
otherSet_3 = Rainfall_data[['YEAR','MON','DIOURBEL']] 
 
print(malariaSet_3) 
print(otherSet_3) 
 

malariaSet_3 = malariaSet_3.drop([0,1,2], axis=0) 
otherSet_3 = otherSet_3.drop([153,154,155], axis=0) 
 
print(malariaSet_3) 
print(otherSet_3) 
 
X_region_test = otherSet_3[otherSet_3['YEAR']>=2018] 
X_region_train = otherSet_3[otherSet_3['YEAR']<2018]  
 
print(X_region_test) 
print(X_region_train) 
 
Y_region_train = malariaSet_3.iloc[:len(X_region_train.MON)] 
Y_region_test = malariaSet_3.iloc[len(X_region_train.MON):] 
 
print(Y_region_train) 
print(Y_region_test) 
 
model_3 = RandomForestRegressor(n_estimators = 19, random_state = 13, 
max_depth = 1, criterion ='absolute_error',min_samples_split = 7, 
                                 min_samples_leaf = 12, max_features = 
None).fit(X_region_train,Y_region_train) 
b = model_3.score(X_region_test,Y_region_test) 
print('Third LagTime Accuracy :',b) 
 
pickle.dump(model_3, open('DIOURBEL/3_month_model.pkl','wb')) 
print('Third Malaria Future Prediction',model_3.predict(df)) 
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Future Prediction Model Results using Lag time for Diourbel region: 

 

 

Figure 4: Three-month forecast of malaria prevalence for the Diourbel region. 

def LoadPklFile(Year, Month,Rainfall): 
    input_data = [[Year, Month, Rainfall]] 
    with open('DIOURBEL/1_month_model.pkl', 'rb') as file: 
        loaded_1_Month_Model = pickle.load(file) 
        predictions_1 = loaded_1_Month_Model.predict(input_data) 
        print('1 Month Malaria Cases :'+str(predictions_1[0])) 
    with open('DIOURBEL/2_month_model.pkl', 'rb') as file: 
        loaded_2_Month_Model = pickle.load(file) 
 

        predictions_2 = loaded_2_Month_Model.predict(input_data) 
        print('2 Month Malaria Cases :'+str(predictions_2[0]))   
    with open('DIOURBEL/3_month_model.pkl', 'rb') as file: 
        loaded_1_Month_Model = pickle.load(file) 
        predictions_3 = loaded_1_Month_Model.predict(input_data) 
        print('3 Month Malaria Cases :'+str(predictions_3[0])) 
 
LoadPklFile(2022,1,2.35) 

#results 
1 Month Malaria Cases :4330.95 
2 Month Malaria Cases :1477.61 
3 Month Malaria Cases :1264.54 
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9. Significance and Future Perspectives 

Most predictive models employ limited variables, often overlooking socioeconomic indicators 

that can significantly enhance prediction accuracy. Our research seeks to transform the fight 

against malaria by establishing a platform that integrates clinical, meteorological, and ecological 

variables. This merger will create a robust data ecosystem for model development, strengthening 

malaria prevention, diagnosis, and treatment (Fletcher et al., 2022; Samarasekera, 2023). Future 

research should aim to develop predictive models for every region using multiparametric 

datasets to evaluate malaria prevalence and develop accurate prevention and control measures 

(Figure 5). 

The application of climate data in predicting and managing malaria prevalence has significant 

implications for public health and disease control. Climatic variables such as rainfall increasingly 

influence malaria transmission, and the information presented can be used to evaluate early 

warning signals. This data displays potential trends and predicted results of potential outbreaks 

based on rainfall, allowing for timely interventions and resource allocations. Understanding the 

potential impacts of climate on malaria can guide the allocation of resources like bed nets, 

antimalarial drugs, and diagnostics to regions most likely to be affected during certain climatic 

conditions and inform public awareness campaigns. Climate data can also guide environmental 

interventions, such as creating better water drainage systems in vulnerable areas and habitat 

management, such as introducing larvivorous fish in stagnant waters or applying larvicides to 

control mosquito breeding. Insights derived from climate-malaria linkages can inform national 

and regional policies for health, environment, and urban planning, ensuring a holistic approach 

to health and development considering the future challenges of climate change. Collaborative 

research between climate and health researchers can lead to the development of innovative 

solutions and strategies tailored to the unique climatic conditions of different regions. 

Incorporating climate data into malaria management strategies represents a convergence of 

environmental science and public health, underscoring the need for a multidisciplinary approach 

to address global health challenges in an era of rapid climate change. 
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Figure 5: Comprehensive methodological framework for developing multiparametric climate-induced predictive models for malaria 

prevalence dynamics. Source: Authors. 
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10. Conclusions and Recommendations 

The objective of the research was to create a prediction model for malaria cases in different 

regions of Senegal using the machine learning Random Forest Algorithm based on data related 

to malaria and rainfall. The study evaluated the model's performance for various splits across the 

regions and drew necessary conclusions.  

• The study discovered that the model's performance was better when trained using 

random splits compared to year-wise splits for most regions, suggesting that a random 

split trained model can produce more accurate predictions of future malaria cases.  

• Additionally, the prediction model's accuracy was good (> 0.9) for regions in Senegal with 

a higher malaria prevalence, indicating that the model can help predict future malaria 

cases in these regions.  

• Lastly, the study predicted malaria cases for the next three months with a one-month lag 

time. This prediction can help stakeholders generate early warning signals and take timely 

and effective preventive measures to control the spread of malaria.  

• In summary, this research shows the potential of machine learning algorithms in 

predicting malaria cases and providing early warning signals to policymakers. 
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