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A Digital Twin (DT) is a digital representation of reality. This report explores the implementation 

of DT in the context of basin scale water management, with a particular focus on developing 

countries. The review begins with an examination of the background of DT and then delves into 

successful applications of DT particularly in developing nations. It also explores the potential of 

integrating Virtual Reality (VR) technologies as a part of DT, emphasizing the importance of 

stakeholder needs assessment for effective deployment. The review highlights the significance of 

data infrastructure architecture and data governance in the context of Digital Twins. The review 

concentrates on the published literature and the application of Digital Twins to river basins, 

emphasizing their role in decision-making at this level and outlining various use cases for water 

management. Furthermore, it assesses the expected impact of DT through the lens of the Sustainable 

Development Goals (SDGs). The review concludes by exploring the integration of Artificial 

Intelligence (AI) in the context of DT for river basins. Overall, this review summarizes the potential 

benefits and challenges of implementing DT for water management in developing countries. 

 

 

1. Background 

Natural systems are inherently complex webs of interconnected 

components that encompass environment, ecosystems, and 

numerous earth system processes operating at scales. Human 

activities and their iterations with these systems make them 

more complex leading to several intended and unintended 

consequences with dynamic feedback loops. While these 

complexities have always existed, these have increased due to 

the recent technological explosion (Sargut and McGrath, 2011). 

As averred by Sargut and McGrath (2011), the complexity has 

gone from something found in large confined systems, such as 

factories and cities, to remote environments such as entire river 

basins. The non-linear effects and dynamic feedback loops 

from the natural systems and their human interactions are 

making it harder to predict what will happen because they 

interact in unexpected ways and are difficult to manage. This is 

especially true where reliable data are not easily accessible. 

River basins are complex natural systems where human 

activities imparted profound influence on water, land, 

ecosystems, and climate patterns. There is no doubt that the 

management of the water resources of a basin is a complex 

issue due to the inherent interplay of the changing environment 

(Bernhardt et al., 2006; Cosgrove and Loucks, 2015; Leb et al., 

2018; Young and Harshadeep, 2020). River basin ecosystems 

provide water resources for agriculture, livestock, and fisheries, 

industry and for domestic use, sustaining the livelihoods of 
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Figure 1 A simple representation of Digital Twin (Jones et al., 2020) 

 

millions of people in the region. Nonetheless, these river basin 

ecosystems are also subject to hydroclimatic extremes, land 

degradation, poor water quality, urbanization and population 

growth. These environmental shifts not only pose a threat to 

the rich biodiversity in river basins but also weaken the 

resilience of local communities to climate change (Fazey et 

al., 2021; Carmen et al, 2022). 

To effectively manage these complex natural systems 

impacted by human activities, there is a need to leverage 

technological advancements such as high-performance 

computing, Artificial Intelligence (AI), and real-time database 

management systems. The DT concept is an advanced version 

of traditional Decision Support Systems (DSS) used to 

manage water resources and environmental processes in river 

basin ecosystems. By utilizing new generation sensors, big 

data, cloud processing and AI, a digital representation of the 

river basin is created, providing a dynamic framework that 

offers comprehensive information for effective management. 

A DT is a rapidly emerging concept that digitally depicts an 

object, a process, or a system (Grieves, 2014; Ademenko et 

al., 2020 and references therein). Grieves and Vickers (2004) 

pioneered the work of DT and presented a DT framework as 

comprising three components, a physical object, a digital 

representation of that object, and the bi-directional data 

connections that feed data from the physical to the digital 

representation, and information and processes from the digital 

representation to the physical (Figure 1). DT has the capability 

of accelerating innovation (e.g., improved modelling of 

system changes or optimized business supply chains) if 

coupled with the Internet of Things (IoT) or AI (Jones et al., 

2020). 

A review of DT literature by Jones et al. (2020) demonstrated 

increased interest in recent years across both academia and 

industry as seen in the growth in the number of related 

publications, processes, concepts, and envisaged benefits. In a 

bid to determine if DT could be used in the Nature-based 

Solutions (NbS) for stormwater and transboundary water 

security projects, the existing conceptual challenges and the 

DT definition as a framework were examined (Brasil et al., 

2022). They identified how the mathematical modelling 

reported in the literature could improve the DT development, 

and evaluated the potential benefits associated with the 

application of DT in NbS. Noting the sparse presence of DT 

applications in water resource management and in particular 

river basin management, the present review aims to a) 

establish the role of AI techniques such as machine learning, 

deep learning, and data analytics in enhancing the predictive 

and decision-making capabilities of digital twins, b) compile 

information about existing DT applications in developing 

countries, c) assess the DT infrastructure, architecture and data 

governance frameworks, and d) characterize the relevant DT 

use cases for river basin management. This review contributes 

towards developing a robust conceptual framework for an 

operational Limpopo River Basin DT. 

2. Literature Review 

The era of digital technologies capable of transforming the 

livelihoods of developing country populace is now more 

obvious. Yet the inherent core pillars including the digital 

infrastructure, human capital and enabling environment, 

continue to act as impediments to these countries’ massive 

digital ecosystem potential that is hugely needed for socio- 

economic equitable growth (Union, 2020). Juxtaposing the 

role that water sensitive sectors play in support of advancing 

economic growth, socio- and gender equity and creating jobs 

under changing climate, this underscores the value of digital 

innovation ecosystem in the context of water resource 

management (Shilin et al., 2021; Józefowicz et al., 2023). 

 

Figure 2 Annual publications of Digital Twin applications for river basin manage- 

ment globally. There are a total of 41 peer reviewed scientific publications between 

2012 and 2023 (Source: Authors) 



WORKING PAPER 

CGIAR Initiative on Digital Innovation | on.cgiar.org/digital 

3 

 

 

 

 
Figure 3 Trends of research themes. Upper-right quadrant are the motor themes (hot topics); themes appearing in the upper-left quadrant are considered very spe- 

cialized topics-niche themes; the lower right are termed basic themes; emerging or declining themes are generally weakly developed, have low density, low central- 

ity and are either emerging or disappearing. 

 

Fortunately, our world is abuzz with disruptive technologies 

that are transforming the way we respond to the present and 

future challenges. The digital transformation strategy for 

Africa (2020-2030), avers that; 

“Africa presents a sea of economic opportunities in 

virtually every sector, and the continent’s youthful 

population structure is an enormous opportunity in 

this digital era and hence the need for Africa to make 

digitally enabled socio-economic development a high 

priority.” 

Against the backdrop of the digital transformation strategy for 

Africa, there is need to ameliorate the unique challenges of 

adoption of digital technologies across Africa. There is no 

doubt that the new technologies and approaches for 

digitalizing and smartening water systems through Big Data, 

algorithm development and Artificial Intelligence (using Deep 

& Machine Learning) are increasingly being recognized 

globally. While Digital Agriculture & Digital Water 

Innovations (hereafter DA-DW-I) have a global footprint, 

arguments for their impact and developmental implications are 

generally subtle in the global South (e.g., Amankwa et al., 

2021). 

 
Table 1 Digital Twin Research interests across countries 

 

Country articles Single-country Multi-country 

China 11 0 

South Africa 3 0 

United Kingdom 1 1 

USA 2 0 

Argentina 1 0 
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Figure 4 Content analysis of Digital Twin scholarship in Africa (Source: Authors) 

 

Peer-reviewed published literature on DT and river basin 

management in scientific databases (e.g., Scopus and Web of 

Science (WoS)), illustrates that the global DT scholarship on 

river basin management is generally a nascent research 

agenda. This evidence is illustrated by more than 12 years of 

publications given in Figure 2, wherein the majority of the 

scientific articles focusing on DT only emerge in the past three 

years. There were 41 peer-reviewed scientific publications on 

 
Table 2 Nature of country collaboration on the DT publications in Africa 

DT with river basin references. In terms of the research 

interests across countries, the review analysis suggests that 

China and South African researchers are at the forefront, albeit 

surprisingly lacking collaboration as most publications focus 

on single country (Table 1). In terms of emerging themes in 

the DT research domain, the review established that there are 

subtle hot topics (upper right), very specialized (upper left) as 

well as basic (lower right) and emerging (lower left) research 

themes as depicted in Figure 3. The evolution of the research 

themes from a global perspective is expected to change as the 

direction of DT scholarship changes in future. 

In reviewing published literature on DT in Africa, few key 

words were used i.e., “Digital Twin” and “Africa” and the 

search kept to “within” abstracts only. Only nineteen articles 

(17 from Scopus and 2 from WoS) were extracted that had 

some content on DT. A quick analysis of the trends, and social 

Country articles Single-country Multi-country 

South Africa 2 1 

United Kingdom 1 1 

France 0 1 

Germany 1 0 

Morocco 1 0 
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Figure 5 A computer-generated digital environment of the Hatfield Digital Twin City, Pretoria, South Africa (Source: https://www.up.ac.za/news/post_3008856- 

future-fit-african-cities-up-designs-digital-twin-city-to-improve-metro-management. Assessed on 11th October, 2023) 

 

networks of the DT scholarship illustrated that the scientific 

discourse only emerged in databases considered from 2018 

(only one article) with most articles published in 2023 (7 

seven articles). Seven peer reviewed scientific publications on 

DT (where river basin management is also mentioned) were 

published between 2020 and 2022. The composition of the 

article types illustrated that most of the DT research has 

mostly appeared in scientific conferences, while five, two, and 

four appeared in Journals, Book Chapters and Reviews 

respectively. The nature of publication collaborations by 

country, Table 2, illustrates that DT scholars from South 

Africa and the United Kingdom exhibit both single and 

multiple country publications while France, Germany and 

Morocco have single country publications. To understand the 

research direction or applications of DT in Africa, Figure 4 

shows the content analysis of abstracts of the 17 reviewed 

articles. Though research on DT in the African continent is 

still at it’s infancy, content analysis results of the reviewed 

articles given in Figure 4 bring forth three main research 

directions, i.e., methodology, applications and use. It however 

important to note that these results are not exhaustive at this 

stage. 

Smart City and Digital Twin City are new novel methods of 

city management being implemented worldwide, in response 

to the expansion of cities and megacities in the current era of 

technology disruption, rapid urbanization and climate change. 

For instance, in 2021, the University of Pretoria announced 

the creation of Hatfield Digital Twin City, a novel initiative 

that aims to boost service delivery with the help of smart 

technology (Figure 5). 

A literature search of smart city applications of DT in the 

African continent resulted to only the following notable 

publications: 

a) Nigerian Electricity Supply Industry (NESI): Aliyu et al. 

(2021) analyzed the NESI framework and concluded that 

the system uses a novel framework that is premised on a 

SoS and digital twins. 

b) Broekman and Steyn (2022) reported on Digital Twinning 

of Lap-based Marathon Infrastructure: the digitization of 

the marathon route using Real-Time Kinematic Global 

Navigation Satellite Systems (RTK GNSS) and high- 

density Light Detection and Ranging (LiDAR) sensing 

capabilities to allow for the detailed geometry 

measurements and environmental analysis before and 

after such events. They concluded that the intersection of 

engineering and sports disciplines and technology 

illustrates the potential realization of smart cities and 

recreation in an evolutionary society. 

http://www.up.ac.za/news/post_3008856-
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Figure 6 Digital Twin and the virtual reality-related research themes (Source: Authors) 

 

c) Braekman et al. (2021) designed a real-time traffic 

quantization using a mini edge artificial intelligence 

platform as a proof of concept of a mini edge computing 

platform for real-time edge processing, which serves as a 

digital twin of a multi-lane freeway located in Pretoria, 

South Africa. 

3. Digital Twins and Virtual Reality 

In the rapidly advancing technological era we inhabit, it is 

advantageous to critically evaluate the functionalities and 

applicability of immersive and interactive digital technologies 

such as Virtual Reality (VR) to sectors which impact our well- 

being and quality of life in sectors such as agriculture and 

water management. Furthermore, it is important to explore 

how these emergent technologies like VR can shape and guide 

decision making in water resources management, aid in risk 

management and accelerate technology usage. This will result 

in the generation of innovative technology-based solutions 

toward solving river basin challenges to ameliorate humanity 

and the sustainability of food and water resources. 

Gigante (1993) defines VR as being “characterized by the 

illusion of participation in a synthetic environment than 

external observation of such an environment. It relies on three- 

dimensional, stereoscopic, head-tracked displays, hand/body 

tracking, and binaural sound”. Additionally, VR may be 

delineated as an immersive, multisensory experience (Holuša, 

et al., 2023; Azarby, & Rice, 2022). It is also referred to as 

providing virtual environments, virtual worlds, or 

microworlds. A journal titled, Development of a Digital Twin 

for smart farming: Irrigation management system for water 
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saving asserts that the “digital twin applied to agriculture is in 

its early stages of development”. It further defines a digital 

twin as an entity where “data flows automatically and in both 

directions between a physical object and a virtual 

object” (Alves, Maia & Lima, 2023). It is imperative to note 

that the adoption of these technologies is in an experimental 

phase and the consolidation of two or more technologies such 

as DT and VR is an even more recently employed practice. A 

literature review on the linkages between VR and DT revealed 

an interesting pattern of these two concepts. The concepts of 

VR and DT seems to have appeared only in the last two 

decades (based on the Scopus and WoS databases). According 

to the two databases, 857 articles (comprising of largely 

journal articles-50%; and conference papers-25%). Most of 

the scholarship only emerged post-2018. In terms of the 

linkages between DT, VR and Artificial Intelligence (AI), 

Figure 6 illustrates detailed interconnections between the three 

concepts and other antecedent terminologies. As shown in 

Figure 6, there are intrinsic interlinkages between these three 

concepts and other concepts such as data analytics, augmented 

reality, machine learning – all related to advanced 

computational techniques. 

There are a host of possibilities for the application of 

technologies such as DT and VR to actively address water 

management concerns specific to river basins in developing 

African countries. The unique characteristics DT and VR offer 

respectively and when combined provide useful real-time data 

to allow for the continuous monitoring of river basins. Firstly, 

DT and VR offer accessible realistic digital visualizations 

which enable integrated river basin modelling. While DT 

establishes a real-time virtual representation of the river basin 

presenting water flow, dam operations, pollution sources and 

other environmental elements, VR allows for the visual 

navigation of the DT model and permits interactivity where 

users may directly impact the virtual environment they are 

visiting using their senses including sight, touch, smell and 

hearing to observe the real-time condition of river basins. 

River basins play a pivotal role in supplying fresh water and 

regulating water flow and quality. A DT and VR 

collaboratively may be used to monitor the physical condition 

of the river basins. The DT will provide the data analytics 

required while VR will allow scientists and engineers to 

conduct virtual inspections and assessments eliminating the 

need for them to be physically present. Lastly, in the case of 

water crises such as droughts or floods the data extracted from 

the DT can be analysed to predict heavy rainfalls that may 

cause floods or increased evapotranspiration and the over- 

extraction of ground water that may cause droughts. 

Concurrently, VR can be employed to pre-visualize droughts 

and floods before they occur to implement prevention tactics 

or mitigate the impact if inevitable. 

An exemplary case study where DT and VR has been utilized 

cooperatively to combat agricultural related challenges can be 

seen through AgroIT, a company that provides technological 

solutions for the agricultural sector, particularly focusing on 

precision agriculture. AgroIT's platform uses Digital Twin 

technology to create a virtual representation of farmlands, 

incorporating data like soil conditions, weather, and crop 

health. On the VR front, they have explored its use for 

visualizing these digital farms. This combination allows 

farmers to virtually 'walk' through their fields, visualize 

potential problem areas, and make informed decisions about 

irrigation, fertilization and other operations1. 

The ambitions of DT and VR for environmental application in 

developing countries based on its previous uses are to aid in 

water resource management systems. This one day may be as 

advanced as integrated user interfaces. Virtual reality is also 

known as an ‘empathy machine’ because of its unique ability 

to immerse users in emotionally charged perspectives, 

experiences, and environments which may prompt positive 

actions and behaviors in real life. Through the advancement of 

brain-computer interfaces users might control DT simulations 

or navigate VR environments using their thoughts. This could 

lead to more intuitive user experiences and might even allow 

for emotion-driven simulations, where users can "feel" the 

impacts of different river management decisions. DT and VR 

technologies strategically locate themselves at the heart of 

digital innovation as solution-based methods that directly 

address the need for visual representations to accurately 

measure the state of water, food and land conditions within 

various regions susceptible to food and water wastage, natural 

disasters and shortages. Researchers and scientists look 

forward to the progression of these technologies and the 

problems they will solve in the water management sector. A 

consideration of the manner we orient and define DT and VR 

as their operations evolve and their capacity expands will be 

essential to the integration and assimilation of these ever- 

changing digital innovations. 

 
 

 
1 Reference: https://cordis.europa.eu/article/id/202825-higher-quality-more-efficient-farming-through-open-standards 
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Figure 7 Digital Twin Typology (Source: Verdouw et al, 2021) 

 

4. Stakeholder Needs Assessment 

DT models are anchored on data from various life cycle 

phases that ought to be collected and analyzed to deliver 

services to a myriad of stakeholders. The utility of the DT 

services is dependent on the level of alignment with 

stakeholder needs. In order ensure uptake of the DT services, 

there is need to undertake stakeholder engagement through the 

development phases of the DT design and implementation. 

Stakeholders are defined as all groups and individuals who 

influence the aims of an organization, project or product and 

vice versa (Freeman and McVea, 2005). As part of 

stakeholder analysis, the stakeholders, their interests and their 

characteristics are identified. This is followed by clustering 

and prioritization of the stakeholders. After analysis, a strategy 

and recommended actions can be defined (Ramirez, 1999). 

From the DT design and implementation perspective, a 

stakeholder typology reported in Mitchael et al., (1997) as 

well as stakeholder identification based on the interest- 

influence matrix reported in e.g., Janssens de Bisthoven et al., 

(2022) should be considered. All the DT use cases relevant to 

river-based management presented in Section 7.2, undertook a 

well-designed iterative stakeholder engagement process 

during the design and implementation of the DT. 

5. 3D Representation of a River Basin Digital 

Twin 

The emergence of digital twin technology has revolutionized 

several fields, from manufacturing to urban planning (Tao et 

al., 2018). The application of this innovative concept to river 

basin management using the 3D Representation provides a 

compelling overview of the potential benefits and challenges 

faced. A river basin, being a complex system with a myriad of 

interrelated components such as water flow, sediment 

transport, vegetation, and human interventions, necessitates a 

robust modeling approach. The three-dimensional 

representation in the mentioned work provides a vivid and 

detailed visualization of these elements, making it an 

invaluable tool for stakeholders. 

6. Data Infrastructure Architecture for a Digital 

Twin 

The envisioned DT architecture is often characterized by two 

main typologies - monitoring and predictive DT as described 

in Figure 7. The monitoring typology represents the past and 

present dynamics of the physical and social-economic 

properties and interactions with the hydroclimatic 

environment, where a virtual representation is created using 

this data. From the perspective of predictive typology, 

predictive models will use past and present data to create a 

plausible future rendition of the present state of the 

environment. 

As reported in Brasil et al. (2022) and Dhulipala (2021), a DT 

conceptual framework comprises the components briefly 

described below (also see Figure 8): 

a) Data source layer: to accurately represent the LRB in a 

digital space, various data sets will be required. These 

data sets ought to represent not only the physical 
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Figure 8 The physical environment, data storage, digital environment and applications services of the Digital Twin (Adapted from Brasil et al., 2022) 

 

environment but also the biological and chemical 

conditions of the basin. Some of the data sources may 

include, remotely sensed data-from satellites and/or 

drones, hydrological process model data, ground 

observations (e.g., water quality/proxy measurements, 

weather data, mobile app captured data sets), and thirty 

party datasets which are often analysis ready (e.g., 

climatic data from the Digital Earth Africa platform or 

non-climatic datasets from the National Department of 

Statistics). 

b) Data processing layer: One of the key functions of this 

layer is to pre-process and format the various data sets to 

ensure inter-operability among the various strands of the 

data. In addition, this layer executes a set of data 

modelling functions including hydrological process 

modelling, climate data downscaling and bias correction, 

satellite image classing to derive various product 

including hydroclimatic extremes and irrigated area maps. 

c) Data visualization and analytic layer: Based on the 

outputs in b), this layer comprises GIS-enabled analytic 

tools embedded with dashboards to display various user 

selected features. Some of the key outputs from this layer 

would be the early warning messages that denote 

hydroclimatic extremes, risk areas and the general state of 

the river basin. 

d) Advisory and dissemination layer: this layer is a rule 

engine embedded decision support rule system that helps 

provide intelligent management options suited for the 

present and future physical state of the river basin. These 

decisions are often disseminated using channels such as 

SMS/USSD, web and mobile applications, and even 

tower broadcasts once the system is implemented. 

7. Digital Twin Data Governance Framework 

At the heart of the DT, is the data collection, curation, 

management, analysis as well as output of data (Figure 8). 

Since DT information can be viewed as the high-end utility of 

all the data sets, a strong data foundation is necessary. To this 

end, a robust data foundation is underpinned by a strong data 

governance2 and data management3 strategy (see Plotkin, 

 
 

 
2 Data governance is the formal oversight, execution and enforcement of authority over the management of data. 
3 Data management is the effective management of data to achieve goals i.e. it ensures that an organization gets value out of its data while minimizing operating risk. 
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Figure 9 Data domains (Source: Khatri and Brown, 2010) 

 

2020; Conarado, 2014). In the context of DT, the four decision 

domains of data governance reported in Khatri and Brown, 

(2010) are appropriate. Thus, a data governance framework 

could comprise; a) data principles (at the top) which are 

intended to establish the direction for all other decision 

domains, and set the boundary requirements for uses of data 

assets, thereby addressing standards for data quality; b) the 

data quality then determines how data are interpreted 

(metadata) as well as accessed (data access) by users; and c) 

the data life-cycle decision which defines the production, 

retention and retirement of data assets (Alhassan et al., 2016). 

The aim of the DT for river basin management could be seen 

as the exhaustive capture of all physical environment 

parameters which are often intrinsically linked to aspects of 

people's lives, and intellectual property. Determining how this 

information is shared between organizations and individuals 

will naturally require some data sharing policy (Jones et al., 

2020). This even more so when referring to both physical and 

virtual entities- to what extent does DT data ownership go? As 

a result, the question of ownership encompasses who accesses 

the data and for what purpose. As reported in Jones et. al., 

(2020), there are social and cultural implications associated 

with the large-scale collection, storage, and sharing of data 

through the Digital Twin that need to be fully addressed 

through a data governance framework. 

While co-designed data governance framework could 

accelerate access and use of data and services of the DT, the 

following key challenges ought to be overcome; 

a) Cataloguing for all the available data collected by 

separate and distinct scientists and/or institutions, 

b) Understanding the data in the proper context and the need 

to link similar data sets together, 

c) Akin to many sectors such as financial services, retail, 

and healthcare companies, there may be a lack of 

resources (e.g., data stewards) to curate and maintain the 

quality of the data. 

 

8. Digital Twin for River Basins Applications 

8.1. Digital Twin for decision making at the river basin- 

level 

The utility of DT applications at basin level lies in the inherent 

adaptive capability wherein the near-real time river basin 

processes will be captured. As a result, any reactive measures 

(including plausible futures) lead to improved efficiency of the 

basin operations, optimized uncertainty measures, early 

warning detection and generally good emergency management 

(Pal et al., 2023). These salient features are supported by 

embedding AI algorithms with the DT architecture. The AI 

has the capability of providing additional insights beyond 

what the sensors provide through e.g., making future 

predictions of the state of the basin as well dynamically self- 

adjusting to independently determine optimal pathways 

towards a set of outcomes. Overall, DTs provide context to the 

data. As reported in de Koning et al. (2023), DTs will likely 

increase in popularity over the next decades, and this calls for 

greater attention focusing on how to capitalize on the strengths 
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Table 3 Examples of DT use cases for river basin management (Source: Authors’ review) 
 

Use-case name Region/Country Key problems Architecture design Selected data sources/inputs 
Stakeholder 

engagement 

Smart Lagoon 

(Cecilia et al., 

2021) 

Multi-country 

(Norway, Swe- 

den, Italy, Den- 

mark), 

Location: Mur- 

cia, Spain 

Develop a DT to build a 

systemic understanding 

of the socio- 

environmental inter- 

relationships affecting 

coastal lagoons and their 

ecosystem due to inten- 

sive agriculture and 

extensive urbanisation 

Cloud-based system Photrack: Discharge platform (web- 

based, mobile app); Geoserver map- 

based interactive interface (Geoserver 

map-based interactive interface); Social 

Sensing Tools (the front-end communi- 

cates with the web API, based on Goog- 

le’s Firebase; Apache Kafka cluster 

platform: publish; store and process 

these streams in real-time, distributes the 

information received from social media 

sources); WaterITech: ASAP Platform 

for real-time sensor data and short-term 

Iterative stake- 

holder engage- 

ment undertaken 

Innovative digital 

twin dam and 

watershed man- 

agement platform 

(Park and You, 

South Korea Flooding damage and 
optimal dam operations 

A GIS-based geospatial AI Rainfall, dam and river; Water levels, 
flow rate; Closed-circuit television 
(CCTV); Three hydraulic and hydrologi- 
cal simulation models; Drones 

Iterative stake- 

holder engage- 

ment undertaken 

Digital Twin 

Ocean (https:// 

op.europa.eu/en/ 

publication-detail/ 

-/ 

publica- 

tion/4902607b- 

e541-11ec-a534- 

01aa75ed71a1) 

Multi-country Restoring marine and 

coastal habitats, support 

a sustainable blue econ- 

omy and mitigate and 

adapt to climate change 

Block 1: Access to data, inte- 

grating existing data and new 

data flows, combined in a 

DataLake; Block 2: HPC: 

operational live model and 

additional capabilities, ena- 

bling the on-demand model- 

ling powering; Block 3: front- 

end interactive simulation 

layer for user applications. 

-Satellite & marine data, advanced mod- 

els, AI and citizen science 

-A multi-variable and multi-dimensional 

description of the marine environment 

and biodiversity, from the coast to open 

ocean, from ocean physics to ice to 

biogeochemistry, from the surface to the 

seabed, allowing a digital exploration in 

time and space of the ocean according to 

different scenarios 

 

Smart river basin 

(https:// 

www.freshwaterco 

mpetencecentre.co 

m/digital-twin) 

Vantaanjoki, 

Oulankajoki and 

Tenojoki catche- 

ments: Finland 

Link the physical, chem- 

ical, biological and socio 

economic components 

Data fusion tool (operational 

system for multi-sensor data 

fusion); Vemala river basin 

model: cost-efficient and 

participatory operations model 

for the monitoring, modelling 

and management of lakes and 

river basins 

Chlorophyll-a data and turbidity from 

routine monitoring stations, ferrybox 

measurements, and data derived from 

Medium Resolution Imaging Spectrom- 

eter (MERIS) instrument on board the 

ENVISAT satellite 

 

 

of digital twinning for smart river basin management. While 

the popularity of DT is expected to grow, there is need to 

guard against the four key misconceptions about DTs 

elucidated in de Koning et al. (2023). These fallacies include 

the following: 

DTs are not just 

- AI/ML but they also require a good understanding of the 

domain of knowledge they represent, 

- A large database of integrated data sets, but the context is 

only realized if modelling and simulations are embedded 

in order to give the data a meaning, 

- Another word for a model, rather they are dynamic and 

unique from other forms of modelling. The users ought 

not be glued to the input data but are allowed to 

interactively explore system dynamics for decision- 

making, and 

- A bid model for everything but are rather a simplified 

representation of a specific part of reality – either an 

entity, a system or a process. 
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Table 4 Impact of the Digital Twin based on the Sustainable Development Goal lens. Adapted from UN (2023). Accessed in October 2023. 

 

SDG # Description Outcomes 

 

 

 

6 

 

 
Enable more sustainable management of 
water resources 

 

· Satellite Data and Digital Twin Models incorporated into integrated water resources 
and river basin management at all levels, including through transboundary coopera- 
tion 

· International cooperation is expanded and capacity-building is supported through 
River Twinning frameworks 

 

 

13 

 

 
Improved actions to combat climate 
change and its impacts 

· All countries’ resilience and adaptive capacity to climate-related hazards and natural 
disasters are strengthened 

· Satellite Data and DT models are to optimise climate change measures into national 
policies, strategies and planning 

 

15 
Enable sustainable use of terrestrial eco- 
systems, combat desertification as well as 
halt land degradation and biodiversity loss 

· Desertification, drought and floods are combated, and strive to minimize/eliminate 
land degradation 

· Conservation of ecosystems, including their biodiversity is ensured 

 

 

17 

 

 
Strengthen Global Partnership for Sustain- 
able Development 

 

· International scientific and technological cooperation is enhanced through Twinning 
of Rivers initiative for sharing knowledge and best management practices 

· Dissemination of environmentally sound technologies to developing countries on 
favourable terms is attained 

 

 

 

 

8.2. Water Management Digital Twin Use Cases 

Results of the literature review of DT for river basin 

management revealed that this area of research is still nascent 

and that many of the DT for river basins are on-going or are at 

conceptualization phases. The African region is worst hit 

given that many of the published literature on DT dwell on 

other sectors like construction, mining, energy and 

manufacturing. The only notable use cases relevant for smart 

river basin management are presented in Table 3. 

8.3. Expected impact of Digital Twin through a lens of 

the Sustainable Development Goals 

As outlined in UN (2023), Wu et al. (2023) and Pigola et al. 

(2021), the impacts summarized in Table 4 could be attained if 

the DT model for river basin eco-system is operationalized 

optimally. 

 

 
Figure 10 A Digital Twin System with depiction of the various contributions that 

AI can offer for optimizing the outcomes (Source: Emmert-Streib, 2023) 
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Figure 11 The linkages between DT and AI based on Scopus and Web of Science databases (Source: Authors) 

 

 

9. Artificial Intelligence applications for River 

Basin Digital Twin 

9.1. Status of AI integration with DT at river basin level 

In addition to mechanistic models about the river basin 

ecology, DTs often contain elements of machine learning and 

AI to process a continuous stream of data (de Koning et al., 

2023). Like a DT framework that utilises the lens of AI and 

Industry 4.0 reported in Kaklis et al., (2023), smart river basin 

management could be aided by an architecture that includes 

such components. From the perspective of Digital Twins 

Systems (hereafter DTS), it is important to underscore river 

basin management is better represented by not just a single DT 

but rather interconnected DT systems. In Emmert-Streib, 

(2023) and refences therein, the importance of AI and ML for 

digital twin research has been underscored. In part, Emmert- 

Streib, (2023) identifies six areas (Figure 10) of AI and ML 

integration in support of DT applications, i.e., 

a) AI: optimization (model creation) 

b) AI: optimization (model updating) 

c) AI: generative modelling 

d) AI: data analytics 

e) AI: predictive analytics 

f) AI: decision making 

Additionally, our own literature search from the Scopus and 

WoS given in Figure 11 depicts clear linkages between the DT 

and AI scholarship between 2007 and 2023. It is important to 

note that higher publication rate of the DT/AI scholarship only 

emerged from 2017 onwards- comprising largely journal 

articles (50%) and conference proceedings (18%). 

9.2. Computational models and the AI Models of river 

basins 

Recent advances in technology have led to the emergence of 

advanced analytic tools that have applications in natural 

resource management in general and water resource 

management in particular. Fuelled by the unprecedent 

amounts of environmental data, there has been a flurry of data 

science techniques and AI algorithms that have applications in 

making sense of the inherently complex and heterogeneous 
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Table 5 Examples of integration of AI in process models 

 

Computational Models AI Add on/contribution 

Floods & Droughts monitoring& prediction Use of fuzzy rule-based forecasts, Artificial Neural network, wavelet methods and Copulas (Kikon 

& Deka, 2022). 

Hydrological /Hydraulic models Exemplified by Gonzales-Inca et al. (2022) and the articles published in the MDPI Special Issue 

“Artificial Intelligence Techniques in Hydrology and Water Resources Management” (Chang et al., 

2023). 

Optimization In Ezzat et al., (2023), five-phased approach premised on deep neural networks (DNN), artificial 

hummingbird algorithm (AHA), and explainable artificial intelligence was used to accurately and 

confidently predict water quality. 

Early warning & decision making Reported in Lamsal and Kumar (2020) and Gao et al. (2020). 

 

data sets. Inevitably, the resultant data models and AI now 

work alongside process models (Babovic and Minns, 2022). 

Additional examples of these linkages are depicted in Table 5. 

9.2.1. AI for floods & drought models 

The implementation of AI in hydrology and climate modeling 

has revolutionized our understanding and prediction of 

extreme water-related events, notably floods and droughts. 

Traditionally, hydrological models are based on physical 

equations representing water movement in the environment. 

However, these models often require extensive calibration and 

may not capture non-linear and complex interactions in large 

systems (Kratzert et al., 2018). AI, 

particularly Machine Learning (ML) 

techniques such as Neural Networks 

(NNs) and Support Vector Machines 

(SVMs), offer a data-driven 

approach. By processing vast datasets 

from satellite imagery, river gauge 

readings, soil moisture content, and 

meteorological inputs, AI models can 

learn intricate patterns and predict 

potential flood or drought events with 

increased accuracy. Furthermore, AI 

integrates multiple data sources, 

capturing the dynamic interactions 

between atmospheric conditions, land 

use changes, and anthropogenic 

factors. This holistic view enhances 

our capacity to foresee, prepare for, 

imminent threats posed by climate change, AI's adaptability 

and continuous learning capabilities provide a cutting-edge 

tool for sustainable water management and disaster risk 

reduction. 

9.2.2. AI for E- flows 

Environmental flows (e-flows) are those river flows or 

discharges that “sustain aquatic ecosystems which, in turn, 

support human cultures, economies, sustainable livelihoods, 

and well-being. The goal of environmental flow management 

is to protect and restore the socially valued benefits of healthy, 

resilient, biodiverse aquatic ecosystems and the vital 

and respond to water-related 

disasters. Especially with the 
Figure 12 Basic conceptual model of the socio-ecological system for the Limpopo e-flow study 

(Source: O’Brien et al, 2022) 
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ecological services, economies, sustainable livelihoods, and 

wellbeing they provide for people of all cultures (Arthington, 

pers. Com. 2022). Thus e-flows are not just about protection 

of the natural environment, but they do so for the express 

purpose of supporting society. 

There are now several hundred methods used to determine the 

e-flows for a river, most of which do not embrace in any 

comprehensive way, the interaction with society. No 

approach could be found that was more than a single or 

combination of statistical and mathematical models without 

any form of machine learning or AI input. Perhaps the most 

sophisticated e-flow model is PROBFLO (O’Brien et al, 2018) 

which incorporates establishing the probabilities of different 

relationships between the drivers of change in a river 

ecosystem and the biological responses. It uses this 

information to estimate the water flows that would protect the 

river ecosystem as well as the risks that several endpoints 

would be satisfied, which it achieves by the organization of 

large amounts of data using Bayesian Networks and Relative 

Risk Assessment. The relationships that are modelled are 

shown in Figure 12. The endpoints are included in the 

assessment to evaluate the socio-ecological effects of altered 

flows in the study to support the implementation of e-flows 

and to consider the trade-offs between the use and protection 

of water resources in the basin. 

The options for future development of such models with AI 

revolve around the ability of AI techniques to process and run 

multiple layers of data using different models. Such a 

demonstration was done with the hydrological model 

MODFLOW which is used for predicting groundwater 

conditions and interactions between groundwater and surface 

water (Miro et al, 2021). The authors discovered that using 

machine learning techniques significantly reduced the time 

required for modelling and enabled greater exploration of the 

uncertainty space. The same should be the next step in 

development of e-flow models such as PROBFLO. 

9.2.3. AI for Water Quality 

AI has emerged as a pivotal tool in monitoring, assessing, and 

predicting water quality, enabling more precise and timely 

interventions to protect aquatic ecosystems and human health 

(Zhang e al., 2020). Machine Learning (ML) algorithms, 

especially deep learning models like Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks (RNNs), 

are capable of processing vast datasets from sources such as 

remote sensing satellites, underwater sensors, and IoT- 

equipped monitoring stations (Asfaw et al., 2021). By 

analyzing these data, AI can detect patterns and anomalies 

associated with various water quality parameters, including 

pH levels, turbidity, dissolved oxygen, and concentrations of 

contaminants like heavy metals or harmful microbes. 

Furthermore, AI-driven predictive models utilize historical 

data to forecast potential water quality deteriorations, allowing 

pre-emptive measures. Integrating AI with GIS facilitates 

spatial and temporal visualizations of water quality trends, 

pinpointing sources of contamination, and identifying 

vulnerable regions. As global challenges like industrial 

pollution, agricultural runoff, and climate change threaten 

water sources, the adaptability, and efficiency of AI in water 

quality management are becoming indispensable for 

sustainable water resource management. 

9.2.4. AI for Crop Mapping 

AI-driven crop mapping leverages machine learning 

techniques to detect, classify, and predict the distribution and 

types of crops in each region, providing an enhanced 

understanding of agricultural landscapes (Zhong et al., 2020). 

With the increasing availability of satellite imagery and 

remote sensing data, Convolutional Neural Networks (CNNs) 

have emerged as an instrumental tool in analyzing these large 

datasets (Liakos et al., 2018). Specifically, CNNs can be 

trained to recognize the spectral signatures and patterns 

associated with various crops, enabling accurate classification 

even when fields are closely packed or intercropped. 

Additionally, temporal analysis of imagery captures the 

growth stages of crops, facilitating identification based on 

phenological changes over time. AI crop mapping also plays a 

pivotal role in assessing crop health, predicting yields, and 

monitoring the impacts of pests, diseases, and climatic 

variations. By integrating AI-driven insights with Geographic 

Information Systems (GIS), stakeholders can visualize the 

spatial distribution of different crops, enabling efficient land- 

use planning, resource allocation, and timely interventions. As 

the demands on agriculture intensify due to global population 

growth and environmental challenges, the precision and 

scalability of AI-assisted crop mapping will be increasingly 

crucial for ensuring food security. 

9.2.5. AI for Water Body Mapping 

AI has shown significant potential in improving the mapping 

of water bodies, especially in vast and remote areas. Utilizing 

convolutional neural networks (CNNs) and other machine 

learning techniques, AI models can be trained to recognize 

patterns, shades, and textures associated with water bodies in 

satellite images. This ability is paramount in efficiently 

tracking changes in water body extents, such as those caused 

by climate change, human activities, or natural phenomena. 
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Such mapping offers valuable insights for urban planning, 

water management, and environmental conservation. 

Advanced AI models can differentiate between permanent and 

temporary water bodies, account for the shadows cast by 

nearby features, and correct for atmospheric distortions. These 

capabilities ensure a high level of accuracy and provide more 

comprehensive insights than traditional mapping methods. By 

leveraging AI in water body mapping, stakeholders can 

achieve better decision-making, predictive analysis, and even 

real-time monitoring of critical water resources. 

9.2.6. AI for Optimization with Applications in River Basin 

Management 

The application of AI in the realm of water resource 

management is rapidly transforming the ways in which we 

understand, allocate, and optimize the utilization of freshwater 

resources (Ruano et al., 2019; Moeini et al., 2020). As water 

scarcity becomes an increasingly pertinent global issue due to 

population growth, urbanization, and climate change, the need 

for efficient water management strategies has never been 

greater. AI provides tools that can analyze vast and diverse 

datasets, from satellite-based remote sensing data to on- 

ground sensor networks, offering insights into the temporal 

and spatial variability of water availability. Machine Learning 

(ML) models, including Neural Networks (NNs), Genetic 

Algorithms (GAs), and Reinforcement Learning (RL), have 

been particularly effective in forecasting demand, simulating 

groundwater flow, and predicting surface water availability 

(Abouali et al., 2019). Moreover, these AI techniques can be 

employed to devise optimal irrigation strategies, reduce water 

wastage in urban settings, and ensure equitable distribution 

across sectors. Importantly, AI-driven models can account for 

the multifaceted interactions between hydrological, 

meteorological, and anthropogenic factors, providing an 

integrated solution to the complexities of water resource 

optimization. 

9.2.7 AI for Rainfall-Runoff Modelling 

Predicting river discharge using empirical and physically 

based rainfall-runoff model has a long history (Beven, 2001). 

Advancements in computing resources and the availability of 

publicly available remote sensing datasets enabled the detailed 

representation of spatial catchment physical properties in a 

model to simulate various hydrological processes at high 

temporal resolution (Peel and McMahon, 2020). While 

techniques like regression models, Artificial Neural Networks 

(ANN) have historically found widespread application in 

rainfall-runoff modelling, their adoption by country 

stakeholders for operational applications remain limited owing 

to their complexity. In recent years, the prevalence of AI 

techniques and user-friendly programming packages has led to 

the creation of numerous machine learning models that can 

estimate river discharge. The purpose of incorporating ML 

into rainfall-runoff modelling is to facilitate the adoption of 

data-driven models and overcome past challenges. 

Mohammadi (2021) identified three widely used machine 

learning models in rainfall-runoff modelling: adaptive neuro- 

fuzzy inference system, artificial neural networks, and support 

vector machine. However, most of the ML applications for 

this purpose are concentrated in data-rich regions across the 

globe. Among developing countries, ML-based rainfall-runoff 

models have started to be applied to major basins in Africa 

and Asia. Some of the ML-based rainfall-runoff applications 

to major river basins in developing countries includes the 

Mekong (Lee et al., 2020; Van et al., 2020; Nguyen et al., 

2023), Ganges (Dayal et al., 2021; Singh et al., 2023), Indus 

(Rauf and Ghumman, 2018; Ammad et al., 2021), Congo 

(Kulimushi et al., 2023), Volta (Kwakye and Bardossy, 2020), 

Niger (Adounkpe et al., 2021), and Zambezi (Hughes et al., 

2023). 

Beyond conventional ML models, DL as a sub-set of ML 

approaches are gaining prominence in rainfall-runoff 

modelling. A comprehensive review on DL applications for 

water resources management identified CNN and Long-Short- 

Term Memory (LSTM) as two dominant techniques applied 

widely (Sit et al., 2020). The LSTM was applied on a large 

scale for 241 selected catchments in the US Catchment 

Attributes for Large-Sample Studies (CAMELS) database in 

which discharge predictions were comparable to other well- 

established models (Karpatne et al., 2018). This approach is 

now extended across different basins around the world for 

flood predictions (Kratzert et al., 2022). The use and adoption 

of machine learning (ML) in rainfall-runoff modelling is 

expected to become more widespread among stakeholders, 

especially in developing countries. This is due to the 

emergence and accessibility of user-friendly software and 

cloud-based platforms, which will simplify the process of 

applying ML to rainfall-runoff modelling. As a result, even 

those without a strong technical background can effectively 

use data-driven models. 



WORKING PAPER 

CGIAR Initiative on Digital Innovation | on.cgiar.org/digital 

17 

 

 

10. Concluding Remarks 

The present and future pressures that climate change and 

development options impose on the natural environment 

coupled with the unprecedented availability of a suite of data 

sets have provided opportunities for scholars and practitioners 

to co-develop new tools to advance environmental research 

domains in an integrative, collaborative and cross-disciplinary 

manner. River basins make inherently vital ecological and 

socio-economic contributions to the sustainable livelihoods of 

inhabitants, yet they are affected by frequent hydroclimatic 

extremes, land degradation, poor water quality, urbanization 

and population growth. These impacts often lead to 

unfavorable competition for the scarce resources in the basin. 

To better understand and manage these environmental shifts, 

there is a need to utilize the evolution of technological trends. 

Technological advances have led to the emergence of DT, 

which is a digital/virtual representation of a physical artifact 

that is constantly updated to reflect its current/future structure 

or behavior. In this regard, a river basin DT can be envisioned 

from the perspective of weather, floods, droughts, water 

quality, water use (across different values chains: domestic, 

industrial, agriculture), urbanization and population growth. 

The present review is aimed at assessing the DT scholarship, 

particularly in Africa, from the perspective of DT and VR, the 

role of stakeholder engagement in the design and 

operationalization of DT, DT data infrastructure architecture 

and governance, DT applications in river basin management, 

and the integration of AI in the DT framework. Results of the 

literature review point to the following; 

a. Research on DTs for river-basin management remains 

nascent and the concept has not found adoption in the 

African river basins, 

b. The DT research domain has inherent association with 

VR and AI, 

c. Stakeholder engagement throughout the design and 

operationalization of the DT ought to be apparent, 

d. DT for river basin management requires two-way 

linkages between a data repository, data models and 

process models, 

e. Embedding AI into a DT framework has the potential to 

enhance river basin management. 

While the present review had an African focus, a global lens 

of DT application in river basin management is likely to 

provide a different perspective. 
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