Mar 23, 2018-If asked where their water comes from, a local might point to Sundarijal or to the water tankers hurtling down Kathmandu’s roads carrying loads from distant springs and wells. But where does the water in Sundarijal come from? And how do these springs and wells stay filled with water all year round?
Another World Water Day passed this week. And around the world, including here in Nepal, water scarcity is a problem that is being increasingly exacerbated due to climate change. To ensure year-round water availability and to protect this crucial resource, we need to employ a scientific approach.
Also refer the WLE project page.
The authors acknowledge the Climate Investment Funds (CIF), Nordic Development Fund (NDF) and the Asian Development Bank (ADB) for funding this work as part of the Strategic Technical Assistance to support the Building Climate Resilience of Watersheds in Mountain Eco-Regions (BCRWME) project led by the Department of Forests and Soil Conservation (DoFSC), Government of Nepal, under the subpackage-2 titled: Watershed Hydrology Impact Monitoring Research. The research work was conducted by the International Water Management Institute (IWMI) with support from the National Institute of Hydrology (NIH), Roorkee, India, for laboratory analysis and interpretation of the isotope compositions. The Institute of Forestry (IOF) was engaged intermittently throughout the project for collaboration, knowledge sharing and capacity building. This research was carried out as part of the CGIAR Research Program on Water, Land and Ecosystems (WLE) and supported by Funders contributing to the CGIAR Trust Fund.













Population pressure and increasing water competition in a changing climate require us to take stock of the availability and use of water across scales. Water availability not only influences farmers’ commercial prospects but also irrigation-related enterprises and agri-businesses. Greater water scarcity could jeopardize irrigation and agricultural markets while excessive water use can lead to declining ecosystems, water quality and soil health. IWMI advises development partners and the public and private sectors on all aspects of water resource availability and use through a variety of advanced modeling and remote-sensing products and tools, including
The ability of farmers to engage in or expand irrigation depends on the prevailing socioeconomic, ecological and political contexts, which are often complex, non-linear and changeable. Overcoming systemic barriers to farmer-led irrigation development while taking advantage of existing opportunities
A lack of affordable credit, particularly for women and resource-poor farmers, is one of the main barriers to expanding farmer-led irrigation in low- and middle-income countries. But
Scaling farmer-led irrigation requires strengthening human capacity and knowledge exchange among all actors and stakeholders involved. IWMI takes an action research approach, working with national and international research institutions, governments, extension agents and public and private organizations to co-develop the scaling ecosystem and strengthen capacity to drive scaling networks and collective action. We support the