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The overarching goal of this study was to develop a comprehensive methodology

for mapping natural and human-made wetlands using fine resolution Landsat

enhanced thematic mapper plus (ETM + ), space shuttle radar topographic

mission digital elevation model (SRTM DEM) data and secondary data. First,

automated methods were investigated in order to rapidly delineate wetlands; this

involved using: (a) algorithms on SRTM DEM data, (b) thresholds of SRTM-

derived slopes, (c) thresholds of ETM + spectral indices and wavebands and (d)

automated classification techniques using ETM + data. These algorithms and

thresholds using SRTM DEM data either over-estimated or under-estimated

stream densities (Sd) and stream frequencies (Sf), often generating spurious (non-

existent) streams and/or, at many times, providing glaring inconsistencies in the

precise physical location of the streams. The best of the ETM + -derived indices

and wavebands either had low overall mapping accuracies and/or high levels of

errors of omissions and/or errors of commissions.

Second, given the failure of automated approaches, semi-automated approaches

were investigated; this involved the: (a) enhancement of images through ratios to

highlight wetlands from non-wetlands, (b) display of enhanced images in red,

green, blue (RGB) false colour composites (FCCs) to highlight wetland

boundaries, (c) digitizing the enhanced and displayed images to delineate

wetlands from non-wetlands and (d) classification of the delineated wetland areas

into various wetland classes. The best FCC RGB displays of ETM + bands for

separating wetlands from other land units were: (a) ETM + 4/ETM + 7, ETM + 4/

ETM + 3, ETM + 4/ETM + 2, (b) ETM + 4, ETM + 3, ETM + 5 and (c) ETM + 3,

ETM + 2, ETM + 1. In addition, the SRTM slope threshold of less than 1% was

very useful in delineating higher-order wetland boundaries. The wetlands were

delineated using the semi-automated methods with an accuracy of 96% as

determined using field-plot data.

The methodology was evaluated for the Ruhuna river basin in Sri Lanka, which

has a diverse landscape ranging from sea shore to hilly areas, low to very steep

slopes (0u to 50u), arid to semi-arid zones and rain fed to irrigated lands. Twenty-

four per cent (145 733 ha) of the total basin area was wetlands as a result of a high

proportion of human-made irrigated areas, mainly under rice cropping. The
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wetland classes consisted of irrigated areas, lagoons, mangroves, natural

vegetation, permanent marshes, salt pans, lagoons, seasonal wetlands and water

bodies. The overall accuracies of wetland classes varied between 87% and 94%

(Khat50.83 to 0.92) with errors of omission less than 13% and errors of

commission less than 1%.

1. Introduction, background and rationale

Wetlands play an important role in bio-geochemical cycling, flood control and

recharging of aquifers. They are considered to be the richest of the biomes (May et al.

2002), and are cradles of biological diversity that support unique flora and fauna and

are very productive environments (Ramsar 2004). They serve as potential sites for

aquaculture, breeding of waterfowl and significant carbon sinks (Dwivedi et al. 1999).

During the last 15 years, the importance of wetlands and their management has gained

increasing recognition in many parts of the world. Thus, a good inventory and map of

wetland systems is very useful to understand the spatial distribution of different

wetlands and their linkage with other land units. This will help in planning,

management and conservation of wetlands. Thus, the inventorying and management

of wetlands has become very important today.

Remote sensing offers the opportunity to map and inventory wetlands rapidly and

consistently, irrespective of the geographic location (see Thenkabail and Nolte 1995,

1996, Thenkabail et al. 2000a). There are several studies (e.g. Thenkabail and Nolte

1996, Lunetta et al. 1999, Töyrä et al. 1999, Thenkabail et al. 2000a, Lyon 2001,

Harvey et al. 2001, May et al. 2002, Ozesmi and Bauer 2002, Kulawardhana et al.

2007) that discuss methods of wetland mapping using remote sensing. Lunetta et al.

(1999) showed that the wetlands in the northern United States were mapped with an

accuracy of 88% using multidate Landsat-5 imagery, whereas the accuracy using the

single date imagery was only 69%. However, when very fine resolution ((4 m)

imagery from IKONOS was used, an accuracy of 88% was achieved using single

date imagery (May et al. 2002). The combination of radar and visible/infrared

satellite imagery is also effective (Töyrä et al. 1999). Bourgeau-Chavez et al. (2001)

used shuttle imaging radar-C (SIR-C) data. Fully polarimetric L- and C-band data

were used in hierarchical analysis and maximum likelihood classification techniques

for the detection of flooding beneath vegetated canopies. Baghdadi et al. (2001) used

C-band SAR data for mapping wetland in Africa by using supervised classification

with an accuracy of 73% for a single date. There are many studies based on radar

imagery, but none of these studies show if it is possible to differentiate irrigated crop

field and seasonal wetland from the rest of the image by applying automated

techniques on single date data. The airborne visible/infrared imaging spectrometer

(AVIRIS) was also used to produce a vegetation map for a portion of the Everglades

National Park, Florida, USA; this averaged 66% correct for all classes (Hirano et al.

2003). The studies referred to above were dependent on automated classification

approaches for wetland mapping. All this literature describe how wetlands can be

mapped using different methods applied with different sensors, but none of them

studied how wetland can be mapped using a single date dry season image by

applying semi-automated methods in order to reduce the manual work and increase

the accuracy substantially.

Indeed, the most commonly used computer classification method to map wetlands

is unsupervised classification or clustering (Ozesmi and Bauer 2002). However,

mapping wetlands through classification is difficult because of spectral confusion

7078 Md. A. Islam et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
M

ar
yl

an
d]

 a
t 0

1:
35

 2
9 

Ja
nu

ar
y 

20
14

 



with other land cover classes and among different types of wetlands (Ozesmi and
Bauer 2002). Studies (e.g. Harvey et al. 2001) have shown that visually interpreted

wetland maps produced 9% higher accuracies than automated approaches.

Generally, visual interpretation is more accurate than automated approaches.

However, the visual approach is cumbersome and impractical for larger areas.

The biggest challenge in wetland mapping is wetland delineation. None of the

studies reported in the previous paragraphs here deal with this adequately. Indeed,

without a proper delineation, wetland classification and characterization is not

possible. High levels of accuracies in delineating and mapping wetlands is feasible

when multidate and/or multi-sensor and/or very high spatial resolution imagery are
used (e.g. Ozesmi and Bauer 2002, Jenson et al. 2002, Lan and Zhang 2006).

However, such studies over large areas will be very costly and time-consuming.

Thereby, one of the main challenges set forth in this study is to develop methods

that can provide high levels of accuracies using freely available, high quality, public

domain datasets such as Landsat enhanced thematic mapper (ETM + ) and space

shuttle radar topography mission (SRTM) data.

Given the above background, the overarching goal of this paper is to investigate

and develop comprehensive sets of automated and semi-automated methods and

techniques for delineating, classifying and characterizing wetlands. The over-
whelming focus will be to explore methods for rapid and accurate delineation and

classification of wetlands using freely available high quality remote sensing and

other secondary spatial datasets from reliable sources such as the United States

Geological Survey Earth Data Center (USGS EDC) and the National Atmospheric

and Space Agency (NASA). The methodology was developed and tested for the

Ruhuna river basin in Sri Lanka and contributes to the methodology development

component of the global wetland inventory and mapping (GWIM) project lead by

the International Water Management Institute (IWMI).

1.1 Specific objectives

The specific objectives of the study are to:

(a) Investigate the strengths and the limitations of the automated and the semi-

automated methods of mapping wetlands and determine their accuracies and

errors,

(b) Evaluate capabilities offered by single date Landsat ETM + data along with

SRTM data for wetland mapping in the tropical regions and

(c) Establish wetland classes from Landsat ETM + -derived wetlands areas and

determine the accuracies of mapping these wetland classes.

2. Methods

2.1 Definition of wetlands

The very first criterion for mapping wetlands is to have a well-understood definition.

The Ramsar convention (Ramsar 2004) defined wetlands as areas of marsh, fen,

peatland or water, whether natural or artificial, permanent or temporary, with water

that is static or flowing, fresh, brackish or salt, including areas of marine water the
depth of which at low tide does not exceed six metres. The United States Geological

Survey (USGS) defined wetland as a general term applied to land areas which are

seasonally or permanently waterlogged, including lakes, rivers, estuaries, and

Methods for mapping wetlands 7079
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freshwater marshes; an area of low-lying land submerged or inundated periodically

by fresh or saline water (Cowardin et al. 1979). The US Great Lakes report to the

US congress (Great Lakes Report to Congress 1994) defines wetlands as areas that

are regularly saturated by surface water or groundwater and is characterized by a

prevalence of vegetation that is adapted for life in saturated soil conditions (e.g.

swamps, bogs, fens, marshes, and estuaries). Taking the Ramsar and USGS

definitions into consideration, the wetlands mapped in this study included irrigated

agriculture, fresh water bodies, salt pans, lagoons, mangroves, riparian vegetation,

permanent marshes, water bodies with or without aquatic plants and seasonal

wetlands.

2.2 Study area

The Ruhuna river basin is located in Sri Lanka (see figure 1) and has a total area of

608 000 ha. The basin is bounded by the Indian Ocean from the southern side. The

elevation of the Ruhuna basin varies from sea level to 2350 m with slopes from 0u to

74u. The rainfall in the basin is bi-modal (as it is in the rest of the country) with

precipitation from the two seasons each year, the north-east monsoon from

December to February and the south-west monsoon from May to September. The

mean annual rainfall is 1574 mm based on 30 year (1961 to 1990) data, while

monthly average ranges from 48 to 274 mm (Jayatillake 2002). Mean monthly

potential evapo-transpiration (PET) in upper catchments varies from 2.8 mm day21

to 5.0 mm day21. The PET for lower catchments is much higher and varies from

4.6 mm day21 to 6.0 mm day21 (Jayatillake 2002). There are 26 major and medium

reservoirs in the basin with a total storage capacity of 8836106 m3. The reservoir

density is 0.166106 m3 km22. Total water spread area is 7493 ha (Jayatillake 2002).

The Ruhuna basin has a diverse landscape covering a wide array of land cover

such as fresh water bodies, lagoons, salt pans, mangroves, rain fed and irrigated

agriculture, rivers, forests and shrub/scrub lands. People depend mainly on

agriculture for their livelihood. This basin has been chosen for this study because

of the diversity of the landscape and also because it is one of the benchmark basins

of the IWMI.

2.3 Satellite sensor data characteristics

Primarily, this study used Landsat enhanced thematic mapper plus (ETM + ) 30 m

data for the nominal year 2000 (see table 1). Peak dry season Landsat images, for the

month of April, were acquired as, during this period, the differences in uplands

versus lowland wetlands are maximum. The Indian remote sensing (IRS) very fine

resolution (VFR) 5 m panchromatic data was used to verify and help assist the

wetland boundary delineation from Landsat ETM + . Monthly moderate imaging

spectrometer (MODIS) time-series normalized difference vegetation index (NDVI)

maximum value composite (MVC) at a 500 m scale for the year 2001 was used to

characterize the final wetland classes. The MODIS time-series NDVI MVC

composition techniques are described in detail in Thenkabail et al. (2005).

Some secondary data were also used to assist the wetland mapping exercise. The

most useful data was the SRTM DEM at 90 m resolution. The slope map generated

using the SRTM DEM was very useful to identify low lying areas. The SRTM DEM

was also used for rapid automated delineation of the stream network. Extensive

field-plot (GT) data, Survey department’s topographic map of 1985 were also used

7080 Md. A. Islam et al.
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Figure 1. The location of the Ruhuna river basin (study area) in Sri Lanka.

Methods for mapping wetlands 7081
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to confirm wetland boundaries along with IRS 5 m data. Precipitation data from

East Anglia University’s Climatic Research Unit (CRU) at 50 km resolution helped

in understanding the rainfall pattern.

2.4 Ground-truth data characteristics

A ground-truth survey was conducted during 15 to 30 May 2005, which is very close

to the image acquisition month (April). For such a big basin, a random and

systematic survey is unrealistic and costly. Therefore, the sampling was carried out

based on the accessibility through road networks and footpaths. A sampling unit

was set as 30 m. Class labels were assigned in the field using a system that allows

merging to a higher class, or breakdown into a distinct class, based on the land cover

percentage taken at each location (Thenkabail et al. 1995, 1996). Class names were

kept as descriptive as possible. A total of 255 global positioning system (GPS)

coordinates were taken in the Ruhuna basin area (figure 2) including detailed

descriptions and percentage of land cover types and digital photographs. The GPS

coordinates were taken in the universal transverse mercator (UTM), zone 44N and

the geographic coordinate system (latitude–longitude). The data points were almost

exclusively on lowland wetlands (see figure 2). Of these 255 field-plot points, 230

points were for lowland wetlands and the remaining 25 for other land units. One in

two points collected on wetlands were reserved for accuracy assessment, leaving 115

points to be used for class identification and labelling process.

2.5 Automated methods of wetland boundary delineation

The automated methods (figure 3) for delineating wetland boundaries were

attempted using: (a) algorithms on SRTM DEM data, (b) thresholds of SRTM

derives slopes, (c) thresholds of spectral indices and wavebands and (d) automated

classification techniques.

Table 1. Characteristics of satellite sensor data used in this study.

Sensor

Spatial
resolution

(m)

No. of
spectral
bands

Radiometric
depth (bit)

Band range
(nm)

Band
centres
(nm)

Band
widths
(nm)

Irradiance
(W m22

sr21 mm21)

1. MODIS 250, 500,
1000 m

7 8 bit 0.62 to 0.67 0.64 0.05
0.84 to 0.876 0.858 0.036

0.459 to 0.479 0.469 0.02
0.545 to 0.565 0.555 0.02
0.123 to 0.125 0.124 0.002
0.163 to 0.165 0.164 0.002
0.211 to 0.216 0.214 0.005

2. Landsat-7
ETM +

30 m 7 8 bit 0.45 to 0.52 0.482 0.65 0.1970
0.52 to 0.60 0.565 0.80 0.1843
0.63 to 0.69 0.66 0.60 0.1555
0.50 to 0.75 0.625 0.15 0.1047
0.75 to 0.90 0.825 0.20 0.2271
10.0 to 12.5 11.45 2.50
1.55 to 1.75 0.165 0.26 0.8053

3. IRS-1D-
Panchromatic

5.6 m 1 8 bit 0.50 – 0.75 0.63 0.25

7082 Md. A. Islam et al.
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2.5.1 Algorithms on SRTM DEM data. The wetlands are topographical lowlands
and hence the DEM data offers a fine opportunity to delineate lowlands from

uplands through the automated approaches discussed below. Delineating wetlands

using DEM is a two-step procedure. First, the drainage system, which is part of the

wetland system, is automatically delineated using algorithms. Second, the areas on

either side of the drainage system consist of valley bottoms and hydromorphic valley

fringes, both of which are part of the wetland areas. The valley bottoms and the

hydromorphic valley fringes are then delineated by proximity analysis by taking the

drainage system as centre and spreading certain distance (discussed below) on either
side of the drainage system.

The drainage system was delineated using SRTM DEM data by using appropriate

algorithms, as described below, in ArcGIS (ESRI 2001) and following a set of

topographical functions. The process involved:

(i) Filling sinks. A sink is a cell or set of spatially connected cells whose flow

direction cannot be assigned to one of the eight valid values in a flow

Figure 2. The field-plot data points used to identify wetland areas and to determine wetland
classes are overlaid on the Landsat ETM + false colour composite red, green, blue 4, 3, 2.

Methods for mapping wetlands 7083
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direction grid. This can occur when all neighbouring cells are higher

than the processing cell, or when two cells flow into each other creating a

two-cell loop (ESRI 2001). All the sinks of the DEM were filled up by using

Figure 3. The methodology flow chart for the automated wetland delineation.
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D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
M

ar
yl

an
d]

 a
t 0

1:
35

 2
9 

Ja
nu

ar
y 

20
14

 



the FILL function of the ArcInfo Grid module. An eight cells neighbour-

hood, which delineated drainage, was used for this function. It is a iterative

process that goes to each cell and fills the sinks by comparing the value of

neighbouring cells until all the sinks are filled.

(ii) Generation of flow direction. The direction of flow is determined by finding

the direction of steepest descent from each cell. This is calculated as:

drop5(change in z value)/(distance)6100. The distance is determined

between cell centres. Therefore, if the cell size is 1, the distance between two

orthogonal cells is 1 and the distance between two diagonal cells is 1.414. If

the descent to all adjacent cells is the same, the neighbourhood is enlarged

until a steepest descent is found (ESRI 2001). The function

FLOWDIRECTION was used to calculate the direction of flow of each

cell. The DEM was assigned as input for this function.

(iii) Generation of flow accumulation. Flow accumulation represents the

accumulated flow in each grid cell. It is calculated by using flow direction

and by counting the number of cells flowing to a particular cell. Thus, flow

accumulation represents the number of upstream cells of any cell in an area.

The FLOWACCUMULATION function was used to calculate this

automatically while it takes the flow direction grid as input.

(iv) Generation of stream network. A set of thresholds of 10, 25, 50, 75, 100 and

500 pixels were used to generate stream network. All the cells in the flow

accumulation grid that are above or equal to those threshold values were

identified to get raster linear networks. The output grids were then

vectorized by using the STREAMLINE function of ArcInfo, which takes

raster linear networks and flow direction rasters as input to produce linear

vectors that also show the direction of flow (node-to node properties of

each stream link are maintained towards the direction of flow).

The above methods lead to generating a stream network for the Ruhuna river

basin (figure 4). Once the streams are accurately derived, the wetland areas were

delineated using a buffer that maps valley bottoms and hydromorphic valley fringes

(Thenkabail et al. 1996), which adjoin either side of the drainage network. However,

there was great uncertainty in this estimation as precise knowledge on the width of

the valley bottoms and fringes is lacking.

2.5.2 Thresholds on SRTM DEM-derived slopes. The SRTM DEM data was used

to derive a local slope map (in degrees) using the SLOPE function of the ArcInfo

Workstation GIS. A threshold (see table 3) of degree slope provides areas of

wetlands or low laying areas (figure 4) and non-wetlands.

2.5.3 Thresholds of spectral indices and wavebands. First, the wetlands in the

images are highlighted by enhancing images (Lyon et al. 1998, Lunetta et al. 1999).

Second, the thresholds of indices and wavebands will automatically delineate

wetlands from non-wetlands (Lyon et al. 1998, Hirano et al. 2003, Schowengerdt

2007). Since the enhancement techniques are the same for the automated and semi-

automated techniques, we will discuss the specific indices and wavebands and their

thresholds for separating wetlands from non-wetlands in §2.6.1 (table 3).

2.5.4 Automated classification techniques. Over the years, numerous researchers

have attempted wetland separation through automated classification techniques on

various remotely sensed data (see Lyon 2001, Campbell 2002, Jensen et al. 2002,

Methods for mapping wetlands 7085
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Fuller et al. 2006, Lan and Zhang 2006) without first delineating wetland areas from

other land units (§2.6). However, Ozesmi and Bauer (2002) show the difficulties of
wetland classification because of spectral confusion with other land cover classes

and among different types of wetlands. Since the automated classification

techniques are applied on entire image areas that include wetlands and other land

units, classification accuracies improve when multi-temporal data are used (Ozesmi

and Bauer 2002), or through geographic information system (GIS) modelling

techniques are used (Sader et al. 1995), along with ancillary data such as soils and

topography (Ozesmi and Bauer 2002), or when data from multiple sensors (Lyon

2001) are used, or very fine resolution imagery (e.g. Fuller et al. 2006) and/or
classification is performed using fused data from multiple sensors and secondary

data (see Thenkabail et al. 2006). In this study, attempts were made to use various

classification approaches (Jensen et al. 1995, Lyon 2001, Campbell 2002, Ozesmi

and Bauer 2002), but the confusion amongst wetland classes (table 4) and between

wetlands and non-wetlands (Lan and Zhang 2006; table not presented here) were

highly significant, discouraging the use of automated classification approaches.

2.6 Semi-automated methods of wetland boundary delineation

The semi-automated methods (figure 5) involved: (a) enhancement of images

through ratios to highlight wetlands from non-wetlands, (b) display of enhanced

images in red, green, blue (RGB) false colour composites (FCCs) to highlight

wetland boundaries, (c) digitizing the enhanced and displayed images and delineate
wetlands from non-wetlands and (d) classification of the delineated wetlands areas

into various wetland classes. The process is described in detail below.

Figure 4. An algorithm was written in ArcGIS to automatically delineate the drainage
network. The network so delineated is overlaid on the Landsat ETM + derived wetlands.
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Table 2. Delineation of stream densities and stream frequencies using: (a) SRTM data, (b) topographic maps and (c) Landsat ETM + imagery.

Serial no. Data type
Threshold*

(Dimensionless)
Stream density (Sd)

(km km22)
Stream frequency (Sf)

(no. km22)

Wetland area factor (WAF)
Wetland area (km2)

Total basin area (km2)
(Dimensionless)

A. SRTM data
1 Stream-SRTM 10 2.46 5.96 –
2 Stream-SRTM 25 1.57 2.46 –
3 Stream-SRTM 50 1.14 1.27 –
4 Stream-SRTM 75 0.94 0.86 –
5 Stream-SRTM 100 0.82 0.66 –
6 Stream-SRTM 500 0.38 0.13 –
B. Topographic maps (1 : 50 000)
1 Stream-Topo map

1 : 50 000
– 1.05 1.13 –

2 Stream-Topo map
1 : 250 000

– 0.60 0.29 –

C. Landsat imagery
3 Landsat-7 – 0.54 0.24 0.24

Note: * is the threshold for SRTM and implies the minimum number of upstream cells chosen to constitute a stream.
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Table 3. Automated methods of delineating wetlands. Thresholds of Landsat ETM + indices
and wavebands as well as SRTM derived slope threshold for delineating wetlands.

Index and band for automatic
delineation

DN (threshold
value)

Accuracy1

(%)

Error

Commission2

(%)
Omission3

(%)

1. Tassel cap wetness index (TCWI)
Wetness-Tcap (Dimensionless) 0 to 5 83 305 17

6 to 10 5 8 95
11 to 20 4 4 96
21 to 40 7 0.4 93
41 to 60 1 0 99
61 to 80 1 0 100
81 to 100 0 0 100

101 to 120 0 0 100
121 to 140 0 0 100
141 to 160 0 0 100
161 to 180 0 0 100
181 to 190 0 0 100

2. Two band vegetation index (TBVI)4

TBVI 32 21 to 20.25 73 15 97
TBVI 42 21 to 0.35 78 11 81
TBVI 43 21 to 0.3 78 6 85
TBVI 52 21 to 0.1 78 6 87
TBVI 53 21 to 0.3 78 11 81
TBVI 57 21to 0.25 75 19 88
TBVI 72 21 to 20.3 75 22 83
TBVI 73 21 to 20.1 75 23 79

3. NDVI
NDVI (Dimensionless 21 to + 1) 21 to 20.5 2 0 98

20.5 to 0 23 19 77
0 to 0.1 15 34 85

0.1 to 0.2 21 75 79
0.2 to 0.3 25 112 75
0.3 to 0.4 13 69 87
0.4 to 0.5 1 8 99
0.5 to 0.6 0 0.1 100

4. Band reflectivity4

Band5 (digital number 0 to 255) 1 to 5 0 0 100
6 to 10 0 0 100

11 to 20 5 0 95
21 to 40 3 2 97
41 to 60 6 18 94
61 to 80 25 88 75
81 to 100 27 124 73

101 to 120 16 60 84
121 to 140 10 17 90
141 to 160 5 5 95
161 to 180 2 2 100
181 to 200 1 1 100
201 to220 0 0 100
221 to 255 0 1 100
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2.6.1 Enhancement of images through ratios. Various image enhancement techni-

ques involving ratio indices were investigated for delineating wetlands automatically

through simple thresholding (table 3). Numerous ratios (Lyon et al. 1998,

Thenkabail and Nolte 1996, 2000a, Thenkabail and Nolte 2000) were investigated.

The best performing indices are reported below.

(i) Tasselled cap wetness index (TCWI). The TCWI is known to be sensitive to

moisture and wetness (Crist et al. 1984). Taking advantage of this, a TCWI

image was computed using the equation (Crist et al. 1984):

TCWI~0:1509B1z0:1973B2z0:3279B3z0:3406B4{0:7112B5{0:4572B7, ð1Þ

where B1, B2, B3, B4, B5 and B7 are the Landsat ETM + reflective band

numbers.

(ii) Two-band vegetation indices (TBVIs). Various two-band vegetation indices

were investigated for highlighting wetness and moisture. For Landsat ETM + 7

band data, there are 21 unique TBVIs (see Thenkabail et al. 2000b, 2002):

TBVIij~ Rj{Ri

� ��
RjzRi

� �
ð2Þ

where i, j51, N, (with N5number of bands57 for Landsat ETM + multi-

spectral) and R is the reflectance of the bands. A total of 49 TBVIs were

computed for the Landsat band matrix of seven bands by seven bands. The

indices above the diagonal are a transpose of the indices below the diagonal.

Hence, after reducing for this redundancy, only 21 unique indices will be left.

The normalized difference vegetation index (NDVI) is one of the TBVIs. Each

TBVI was subjected to variable thresholds to get the separability of wetlands

from other land units (table 3).

(iii) Band reflectivity. Similar to TBVIs, thresholds of Landsat ETM + band

reflectivity for the six non-thermal bands were used to automatically

Index and band for automatic
delineation

DN (threshold
value)

Accuracy1

(%)

Error

Commission2

(%)
Omission3

(%)

5. SRTM-derived slope
Slope (u) 0 to 0.5 28 24 72

0.5 to 1 24 53 76
1 to 2 29 97 71
2 to 3 8 27 92
3 to 4 2 10 98
4 to 5 1 7 99
5 to 10 3 30 97

10 to 20 3 45 97
20 to 40 1 24 99
40 to 75 0 1 100

Note:
15Accuracy5Percentage of wetland area falling inside wetland boundary;
25Commission5Percentage of wetland area falling outside wetland boundary;
35Omission5Percentage of wetland area not mapped as wetland by specific threshold;
45Results of only the best performing index or waveband have been reported.

Table 3. (Continued).
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Table 4. Error matrix showing spectral mixing between various wetland classes.

Wetland types Irrigated
harvested

Irrigated
mature

Flood irrigated Riparian
vegetation

Water bodies Seasonal
wetlands

Wetland with
vegetation

Mangrove Total

Irrigated harvested – Y 1
Irrigated mature – Y Y Y 3
Flood irrigated – Y Y Y 3
Riparian vegetation Y – Y Y 3
Water bodies Y – Y 2
Seasonal wetlands Y Y Y – 3
Wetland with vege-
tation

Y Y – 2

Mangrove Y Y Y – 3
Total 1 3 3 3 2 3 2 3 20

Note: Y indicates the presence of conflict between classes.
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delineate wetlands from other land units (table 3). The optimal thresholds

were determined by trial and error.

2.6.2 Display of enhanced images in RGB FCCs to highlight wetlands. Image

display techniques are crucial to highlight wetlands from other land units so that the

wetland boundaries are crystal clear and can be digitized accurately. The process

begins by choosing the enhanced images (§2.6.1) and depicting them in various RGB

FCCs. The following display of RGB FCCs distinguished the wetland boundaries

from uplands the best:

N ETM + 4/ETM + 7, ETM + 4/ETM + 3, ETM + 4/ETM + 2,

N ETM + 4, ETM + 3, ETM + 5,

N ETM + 7, ETM + 4, ETM + 2 and

N ETM + 3, ETM + 2, ETM + 1,

where ETM + stands for the enhanced thematic mapper plus sensor of the Landsat-

7.

The process of highlighting and distinguishing the wetlands from other land units

is depicted in figure 5(b) and 5(c) for a very small sub-area of the study region.

Figure 5(c) highlights the wetlands from non-wetlands as depicted using Landsat

ETM + ratios ETM + 4/ETM + 7, ETM + 4/ETM + 3, ETM + 4/ETM + 2, displayed

as a FCC in RGB.

2.6.3 Digitizing the enhanced and displayed images to delineate wetlands from non-
wetlands

Once the images are enhanced (§2.6.1) and displayed (§2.6.2) at full pixel resolution

(e.g. figure 5(b)), they are digitized directly off screen. The process of digitizing

begins by selecting FCC RGBs that separate out wetlands from other land units as

illustrated in figure 5. This is followed by using the additional FCC RGB

combinations (e.g. ETM + 3, ETM + 2, ETM + 1) to see whether any additional

wetland areas can be added that were missing from earlier FCC RGB combinations

(e.g. ETM + 3, ETM + 2, ETM + 1). In addition, thresholds of SRTM-derived slopes

(§2.5.2) and waveband reflectivity (§2.5.3) were used to detect the wetland

boundaries.

After digitization the preliminary wetland boundary, the map was rechecked and

necessary editing was carried out to correct inclusion or exclusion errors based on

extensive field-plot knowledge (figure 2).

2.6.4 Classification of delineated wetland areas into wetland classes

Once the wetland boundaries are determined (§2.6.1 through to §2.6.3), the wetland

areas were delineated using the Landsat ETM + data and classified using the

unsupervised ISOCLASS clustering algorithm (ERDAS 2006). The ISOCLASS

clustering provided a substantial within-class variance for wetlands, as also

determined by Friedl et al. (2000) and McIver and Friedl (2002), and hence was

used as a ‘starting block’ for determining unique wetland classes. An initial 250

classes were reduced to 15 and 8 classes through a rigorous class identification and

labelling process (see figure 6; also see Thenkabail et al. 2006).

Classes were labelled (table 6) based on bi-spectral plots, NDVI values of classes,

field-plot points and visual interpretation of 5.6 m IRS panchromatic data. It was
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(a)

(b)

(c)
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Figure 5. Semi-automated methods for wetland delineation: (a) methodology flow chart for
the semi-automated wetland delineation, (b) enhancement and display to highlight wetlands
depicted here in the FCC RGB of TM4/TM7, TM4/TM3, TM4/TM2 for a small sub-area in
the study region and (c) delineated wetlands.

Figure 6. Illustration of wetland classification and class identification processes.
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found that considerable numbers of class signatures were not separable because they

were showing the same reflectivity in all bands.

One of the objectives of the research was to determine as many wetland classes as

possible. During the class identification and labelling process (figure 6) many classes

remained mixed. In order to understand the mixing process, a conflict matrix was

developed that showed which classes mixed with which other classes (table 4). The

classes that mixed with one another included: (a) irrigated grownup rice mixing with

riparian vegetation, (b) mangrove and water bodies with densely populated aquatic

plants (which also has high NDVI), (c) irrigated fields under preparation with

marshy land or shallow water and (d) seasonal wetlands (which were dry for that

date) with harvested agricultural fields.

In order to overcome the spectral mixing of classes that lead to conflict classes

(table 4), block analysis was performed by splitting the wetland areas into: (a)

irrigated agriculture including homestead, (b) water bodies and (c) riparian

vegetation and mangroves. Classification (§2.6.4) and class identification and

labelling process (figure 6; Thenkabail et al. 2006) were then performed on each

block. To remove unwanted scattered pixels, the MAJORITY function was applied

on a 363 pixel neighbourhood (ERDAS 2006). This process lead to classifications

at most disaggregated (15 classes) to most aggregated (4 classes) classes (table 6).

The classes followed the Ramsar wetland convention scheme.

3. Results and discussions

First, the results and discussions of mapping wetlands using automated methods are

presented. This is followed by wetland mapping using semi-automated methods,

computation of wetlands areas, accuracies of delineated wetlands and accuracies of

wetland classes mapped. Finally, there is a discussion on the characterization of

wetland classes.

3.1 Mapping wetlands using automated methods

The results of delineation of wetlands using automated methods (see §2.5 and its

sub-sections) are presented in tables 2 and 3 and figures 4, 7(b) and 7(c).

First, the results of the use of algorithms on the SRTM DEM for delineating

wetlands (see table 2 and figure 4). The overwhelming proportions of the wetlands in

any landscape are along the drainage system, with drainage forming the centre of it.

So, an accurate delineation of drainage is the first step towards mapping the wetland

areas accurately. Once the drainage is mapped accurately, GIS techniques such as

SEARCH and SPREAD can be used to map valley bottom and hydromorpic valley

fringe wetland areas on either side of the stream network (see Thenkabail et al.

2000a, Thenkabail and Nolte 1996, 1995). The drainage indicators are measured

using stream density (Sd) and stream frequency (Sf) (see table 2). The SRTM-derived

Sd and Sf vary widely depending on the threshold (minimum number of upstream

pixels chosen to form a stream), as seen in table 2. The advantage of the SRTM-

derived drainage is the rapidity with which they are derived using automated

algorithms. This can be done within a few hours of computing with a powerful

computer for an entire river basin such as the one used in this study area. Once the

streams are generated (figure 4), the stream density (km km22) and stream frequency

(number km22) are determined and compared with the stream density (Sd) and

stream frequency (Sf) generated using topographic maps (figures 7(a) and 7(b)) and
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Landsat ETM + images (figure 7(c) and table 2). Streams from topographic maps

were obtained by direct digitization. The streams from Landsat imagery were also

obtained by direct digitization on the image (see §§3.2 and 2.6). Later density was

calculated by dividing the stream length (km) by total basin area (km2). Frequency

was calculated by dividing the number of streams by the total area of the basin

(km2). Once the streams are accurately derived, the wetland areas can be delineated

using a buffer- or pixel-based majority function coupled with spatial modelling in

the GIS framework in an ArcInfo Workstation GIS. The Sd and Sf generated from

the SRTM DEM are compared with that of the topographic maps (figures 7(a) and

7(b)) and Landsat ETM + -generated Sd and Sf (figure 7(c) and table 2). When the

SRTM DEM threshold was 50, the Sd values with 1.14 km km22 and Sf values with

1.27 km km22 were close to the corresponding reference values from topographic

maps at 1 : 50 000. However, the four main problems associated in using the SRTM

DEM data for wetland delineation (see figure 4) are:

(i) Spurious streams. Generation of spurious stream networks wherein

significant number of streams are generated along non-existence flow paths.

(ii) Non-smooth stream alignment. Where the streams look like a connected

series of straight lines coming from various directions. The Landsat ETM +
(900 m2) has nine times better resolution than the SRTM DEM (8100 m2),

which causes the zigzag patterns seen on the SRTM data.

(iii) Spatial dislocation of streams. Streams get spatially dislocated leading to

inland wetlands being mapped in areas away from their actual location.

(iv) Stream width absence. The actual wetland areas such as flood plains, inland

valley bottomlands and hydromorphic fringes are represented by stream

(a) (b)

(c)

Figure 7. Delineated wetlands using Landsat ETM + (c) compared with drainage network
delineated using 1 : 50 000 topo maps (a) and 1 : 250 000 topo maps (b).
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width. Absence of and/or inadequate representation of stream widths mean

that the wetland areas are inadequately represented and/or may go missing

completely. The linear features seen in figure 4 are the drainages derived

using the SRTM DEM.

Second, the thresholds of the SRTM slopes had low accuracies and high errors of

omission and commissions (point 5 in table 3). Typically, a slope of less than 1u
delineates the higher stream order or large size wetlands well, but misses out the

lower order streams and associated inland valleys (see Thenkabail et al. 2006),

leading to high omission errors (table 3). Also, the problem with the SRTM is that it

does not work well in plain areas, where incorrect stream alignment is very usual.

Third, a rapid means of wetland boundary delineation will be to use thresholds of

various indices (table 3). Wide arrays of such indices were investigated in this study,

the best of which are reported in table 3, and which showed low accuracies and high

levels of errors of omissions and/or commissions in delineating wetlands, confirming

the difficulties of indices as a direct measure of wetland mapping, as indicated in

Ozesmi and Bauer (2002). For example, the TCWI with a threshold of 0% to 5%

provided an accuracy of 83% with errors of omission of 17% and errors of

commission of 305%. The high level of errors of commission indicates non-wetlands

added to wetlands.

Fourth, classification of images to delineate wetlands showed a spectral mixing

between various wetlands (table 4) and between wetlands and other land units

(results not shown). For example, mangroves mixed with riparian vegetation, well-

grown irrigated crops, and flooded irrigated classes. Spectral mixing with other

wetland classes is shown in table 4.

The above results clearly imply that automated methods have serious limitations

in delineating and mapping wetlands from other land units.

3.2 Mapping wetlands using semi-automated methods

3.2.1 Delineation of wetlands using semi-automated methods. In the semi-auto-

mated approaches, the images were first enhanced using various ratios (see §2.6.1),

displayed (§2.6.2) and digitized (§2.6.3). For example, the enhancement and zoom in

display of FCC in RGB of ratios TM4/TM7, TM4/TM3 and TM4/TM2 are depicted

in figure 5(b), highlighting the value of indices in wetland mapping (Lyon et al.

1998, Lunetta et al. 1999, Lyon 2001). This is followed by digitizing the wetlands that

are seen in darker shades following the drainage system (figure 5(b)). The digitized

wetlands are then masked and separated out of other land units (figure 5(c)). A similar

procedure was used to delineate the wetlands of the entire river basin, leading to a map

of wetland areas for the Ruhuna river basin (figure 8). The digitized wetland boundary

map was rechecked using VFR IRS 5 m panchromatic data as a backdrop and editing

was done to correct inclusion or exclusion errors. Slopes of less than 1u were effective to

give an indication of low lying areas and hence were also used as a backdrop to check

the wetland boundaries delineated using Landsat based indices and waveband

reflectivity displayed as FCC RGB and then digitized. The delineation was in itself a

rapid process (it took 5 days for one analyst to separate the wetlands in the total basin

area of 608 000 ha).

3.2.2 Areas of wetlands delineated by semi-automated methods. The total area of

the wetlands was 145 731 ha (figures 7(c) and 8), which is 24% of the total basin area.

This is a large percentage compared to 9% to 18% in the African savannas and
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rainforests as determined by Thenkabail et al. (2000a), Thenkabail and Nolte (1995,
1996) and 12% in the Southern African Limpopo river basin (Kulawardhana et al.

2007). This is because, in the Ruhuna the irrigation extent is very high indeed, 41.5%

(figure 9) of the total wetland area. If we leave the irrigated areas out, the wetland

areas in the Ruhuna is 14%. The results highlight the ability of the semi-automated

methods in delineating the human-made wetlands (irrigated areas) as well as natural

wetlands.

3.2.3 Accuracies of wetland boundaries delineated by semi-automated methods. The

delineation of wetland areas (figures 7(c) and 8) by semi-automated methods took

place before visiting the field for collecting the field-plot data. During the field-plot

data collection mission, exact coordinates of 230 wetland locations were determined

using GPS and overlaid on the wetlands delineated (figure 8) using semi-automated

methods. Since all the field-plot data points were gathered only after delineating
wetlands, these points made a perfect independent dataset to test the accuracy of the

mapping. Of the 230 field-plot points, 222 fell within the delineated wetlands (see

Figure 8. Verification of delineated wetlands by semi-automated methods. The field-plot
data points are overlaid on Landsat ETM + delineated wetlands.
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figure 8) using semi-automated techniques. The other 8 points that did not fall inside

the wetlands were taken on narrow streams in hilly areas that were not recognizable

in Landsat images. These were also areas where VFR imagery was absent to refine

boundary delineation after the wetland digitization process (§2.6.3). The accuracy of

96.5% in wetland boundary delineation is remarkable, but achievable through semi-

automated methods, especially when the VFR imagery (May et al. 2002, Fuller et al.

(a)

Figure 9. Wetland classes. (a) The dis-aggregated 15 class and (b) aggregated 8 class wetland
classes determined based on the hierarchical classification system.
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2006) is used to refine boundaries determined by Landsat ETM + and the SRTM.

The semi-automated methods require more time and resources than the automated

methods, but the accuracies are way higher. Given that the precise delineation of the

wetland boundaries is a must for wetland classification and characterization and

since there is no automated methods (table 3) that can delineate wetlands accurately,

the semi-automated methods are the best and the most accurate (table 5) option for

wetland boundary delineation.

3.2.4 Wetland classes. Once the wetlands are delineated accurately (figure 8 and

table 5), the classification of wetlands and the class identification and labelling

(b)

Figure 9. (Continued ).
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process (figure 6, §2.6.4) leads to distinct classes (figures 9(a) and 9(b)). A

hierarchical class labelling scheme, keeping in view of the recommendations by

the Ramsar convention (Ramsar 2004), was adopted and wetlands were mapped at

four levels (table 6): most disaggregated level I to most aggregated level IV. The class

distribution for the most disaggregated level I (figure 9) and the aggregated level III

(figure 10) show the dominance of irrigated areas (41.5%), natural vegetation and

home gardens (36.4%) and seasonal wetlands (10.4%). An overwhelming proportion

of the irrigated areas had rice cultivation.

3.2.5 Accuracies of wetland classes. The accuracies were assessed using the 115

independent data points reserved for the purpose. The wetland classes were mapped

with an accuracy of 87% for 15 classes (figure 9) to 95% for 8 classes (figure 10 and

table 7). The errors of commissions and the errors of omissions were low or

negligible and those of Khat (a measure of accuracy using Kappa Statistics) were

high (table 7). These results clearly imply the strengths of the rigorous semi-

automated methods and procedures adopted to identify and label wetland classes.

However, it is possible to map more distinct wetland classes with lesser confusion

and greater accuracies using the hyperspectral data (Hirano et al. 2003).

4. Wetland characterization

Once the classes are delineated and classified using fine resolution imagery, the class

characteristics (e.g. figure 11) can be studied using MODIS monthly time-series

MVC NDVI values as illustrated for the eight class map (figure 10). The NDVI

time-series class characteristics follows the rainfall trend (figure 11); vegetation

begins to gain vigour in mid September to October and remains at high vigour

except for the months of mid May to mid September, where there are parched dry

conditions (see figure 11). The trends of all classes follow a pattern with highest

NDVI values for natural vegetation and irrigated agriculture and lowest for lagoons

and salt pans (figure 11).

A major limitation of the Landsat ETM + and similar finer resolution data is the

lack of time-series imagery. This is often a hindrance in understanding the land use/

land cover (LULC) class characteristics. For example, Landsat ETM + can discern

irrigated agriculture from mangrove forests and natural vegetation (see figure 9(a)

and table 6). In contrast, the MODIS data fails to discern irrigated areas from

natural vegetation and mangroves as a result of coarse 500 m spatial resolution.

However, the continuous 8 day time-series data available from MODIS 7-band

reflectance provides an invaluable understanding of the LULC characteristics. In

this study, we demonstrated taking advantage of both higher spatial resolution

Landsat ETM + to discern classes (figures 9(a) and 9(b) and table 6) and coarser

spatial resolution MODIS 500 m data (figure 10). This is achieved through a three

step process: (1) use Landsat ETM + to separate distinct classes, (2) mask out each

class and cut out MODIS image areas coinciding with these class masks and (3) use

MODIS NDVI MVC to generate time-series class characteristics (figure 10).

Table 5. Accuracies of wetland boundary delineation.

Number of wetland GT points 230
Number of GT points falling inside wetland boundary 222
Number of GT points falling outside wetland boundary 8
Overall accuracy (%) 96.5
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Table 6. Hierarchical classification of wetland classes at four levels.

Class
no
Level
1 Class name Level 1

Area (ha)
Level 1

Class no
Level 2 Class name Level 2

Area (ha)
Level 2

Class no
Level 3 Class name Level 3

Area (ha)
Level 3

Class no
Level 4

Class name
Level 4

Area (ha)
Level 4

1 Waterbody (fresh)
deep

11096 1 Waterbody (fresh) 12940 1 Waterbody (fresh) 12940 1 Waterbody 15680

2 Waterbody (fresh)
shallow

1843

3 Lagoon deep 1810 2 Lagoon 2246 2 Waterbody
(brackish)

2741

4 Lagoon shallow 436
5 Salt pan deep 491 3 Salt pan 495
6 Salt pan shallow 3
7 Seasonal wetland with

high moisture
4923 4 Seasonal wetlands 16179 3 Seasonal wetlands 16179 2 Seasonal

wetlands
16179

8 Seasonal wetland with
low moisture

11255

9 Permanent marshes/
waterbody with
high-density
vegetation

339 5 Permanent marshes/
water body with
vegetation

1126 4 Permanent marshes/
water body with
vegetation

1126 3 Vegetation 56094

10 Permanent marshes/
waterbody with
low-density vegetation

788

11 Mangrove
high-density

461 6 Mangrove 734 5 Natural vegetation 54967

12 Mangrove low-density 273
13 Natural vegetation

(riparian/homestead)
high-density

32094 7 Natural vegetation
(riparian/homestead)

54233

14 Natural vegetation
(riparian/homestead)
low-density

22139

15 Irrigated agriculture 62505 8 Irrigated agriculture 62505 6 Irrigated agriculture 62505 4 Irrigated
agriculture

62505
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5. Conclusions

The study has established that the semi-automated methods involving image

enhancement, display, digitizing and classifying techniques were very well suited for

rapid and accurate delineation of wetlands using single date Landsat ETM + and

SRTM DEM data. The best Landsat ETM + image enhancement and FCC RGB

colour gun displays that help distinguish, digitize and delineate wetland boundaries

from other land units were:

ETM + 4/ETM + 7, ETM + 4/ETM + 3, ETM + 4/ETM + 2,

ETM + 4, ETM + 3, ETM + 5,

ETM + 7, ETM + 4, ETM + 2 and

ETM + 3, ETM + 2, ETM + 1.

In addition, the SRTM DEM slope of less than 1% also helped delineate large or

higher order wetlands, rapidly and accurately.

Figure 10. Characterization of wetlands. The time-series characteristics of various wetland
classes as determined using MODIS NDVI MVC.

Table 7. Accuracies and errors of wetland classes.

Classification
level
(no.)

Number of
classes
(no.)

Accuracy
overall

(%)
Khat

(Dimensionless)

Errors

Omission
(%)

Commission
(%)

1* 15 87 0.83 13 1
2 8 94 0.92 6 1
3 6 94 0.92 6 1
4 4 95 0.92 5 2

Note: * is accuracy assessment at level 1 and is reported for 13 out of 15 classes. Class
numbers 6 and 12 did not have any ground truth data for accuracy assessment.
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The strengths of the semi-automated methodologies were demonstrated in the

Ruhuna river basin, Sri Lanka, which was a fairly large size basin with a total area of

608 000 ha and that had diverse climatic, topographic and biophysical conditions. The

semi-automated techniques determined the wetlands to be 24% of the total basin area

and were mapped at 97% accuracy, as determined using field-plot data. The high

percentages of wetlands were mainly as a result of the 41% human-made irrigated

areas, mostly under rice cultivation. Methods to establish different wetland classes

were demonstrated using a hierarchical classification system. Fifteen disaggregated

wetland classes were mapped with an accuracy of 87% (with a Khat value of 0.83) and

an error of omission of about 13% and error of commission of about 1%. For the

aggregated 8, 6 and 4 classes, the accuracies were 94% or better (with Khat of 0.92) with

errors of omissions of about 6% and errors of commissions of about 1%.

In contrast, the automated methods of wetland delineation involving: (a)

thresholds of Landsat ETM + indices and wavebands, (b) SRTM-derived slopes,

(c) algorithms for SRTM DEM-derived drainage delineation and (d) automated

classification techniques, provided unacceptably low levels of accuracies and/or high

levels of errors of omissions and/or commissions. Automated methods involving the

SRTM-derived wetland boundaries had four known limitations: (a) churning out

non-existent or spurious wetlands, (b) providing non-smooth alignment, (c)

resulting in spatial dislocation of streams and (d) absence of stream width.

The study also demonstrated how the time-series MODIS 500 m data are used to

characterize the wetland land use/land cover (LULC) classes derived using fine

resolution Landsat ETM + 30 m data. Thus, the higher resolution Landsat ETM +
and coarser resolution MODIS perfectly complement and supplement each other.
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