Implication of community-based small scale irrigation in human and livestock health interaction: a case study in the Upper Awash River Basin areas

> Michael Asrat and Yilma Jobre

Outline

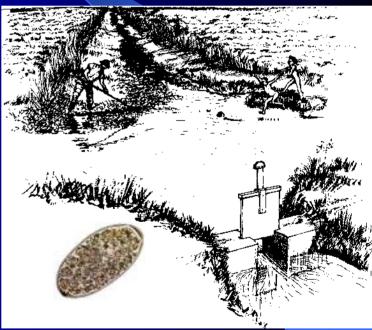
- Background and rationale
- Objective
- Materials and Methods
- Major findings Discussion
- Conclusion and recommendations

A collaborative work between

Addis Ababa University

(Since 1950)

Background and rationale


Ethiopia

- Agriculture is pillar of the economy
- Considerable dependence on natural rain
- Subsistence crop-livestock mixed farming in highlands and pastoralism in the lowlands

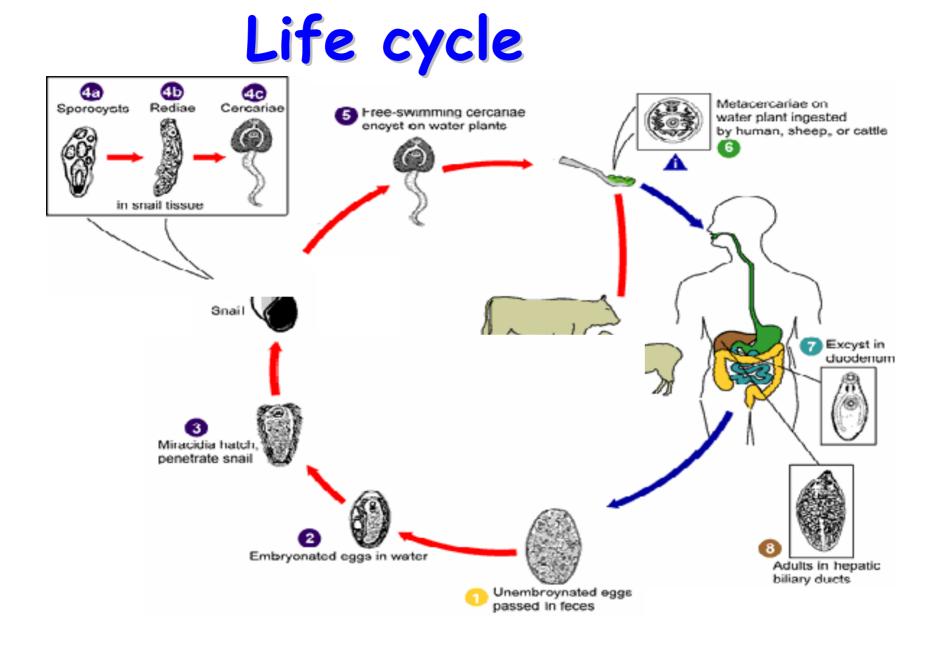
Expansion of irrigation projects

- Change in land use pattern
- Intensification of labour
- Enhance food security
- Ensure sustainable agriculture
- Increase risks of water-borne diseases

Eg. fasciolosis, schistosomosis & malaria

Ruminant fasciolosis

F. hepatica



F. gigantica

The intermediate host

Background (cont'd...)

Fasciolosis

> Economic importance

- found in 5 continent (WHO, 1995)
- loss US\$ 200 mill. /annum (Ramajo *et. al.,* 2001)
- 600 mill. animals infected (Ramajo et. al., 2001)

Zoonotic Importance

- 1970-1990: about 2600 pos. from 42 countries (Slifko *et. al.*, 2000)
- 2.4-17mill. global prevalence (Slifko et. al., 2000) and 180mill. at risk (Ramajo et. al., 2001)

Background (cont'd...)

Common transmission route

Ingestion of contaminated vegetation Eg. irrigated area

water containing floating metacercariae

> The risk factor

waste water effluent for irrigating vegetables
use of animal manure as fertilizer

Epidemiology of the disease influenced by

grazing habits

rate of egg production as a function of pasture contamination

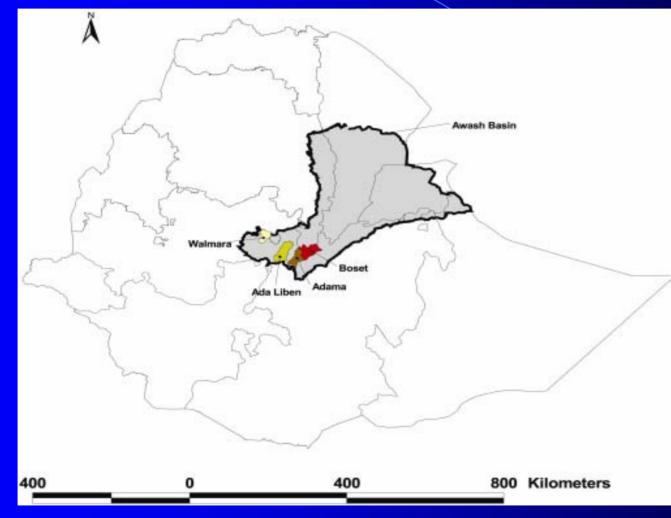
Background (cont'd...)

>Control

- Control of snail population
- Environmental sanitation and manipulation
- Application of cost effective treatment

Situation in Ethiopia

- 23.62 mil. Sheep (CSA, 2004)
- 75MT of mutton/annum (FAO, 2002)
- Financial loss due to fasciolosis
 - * 48.8 mill. Eth. birr/annum (Ngategize, et. al., 1993)
 - 46.5% weight loss
 - 48.8% liver condemnation
 - 4.7% mortality


Objective: -

To assess the potential impact of communitybased irrigation on the spread of fasciolosis in the upper Awash River Basin areas

 To evaluate the effect of a strategic treatment on some indicative parameters.

Material and Methods Study areas

Map of Ethiopia showing the study sites in the Awash River Basin.

Materials ... (cont'd)

Study animals Protocol

Infection prevalence

- Effects of strategic anthelmintic treatment
- Statistical analysis

Results and Discussion

Infection prevalence (November 2003 – October 2004) (n=1296).

Category	Number examined	Number and percent positive
1) Altitude		
Highland	529	333(62.9%) ^a
Mid-altitude	302	154(51%) [▶]
Lowland	465	242(52%) ^b
2) Season		
Dry	690	370(53.6%) *
Wet	606	359(59,296)
3) Grazing land		
Irrigated	732	445(60.8%)
Non-Irrigated	564	284(50.4%) ^b
4) Age		
Young	665	368(55.3%)
Adult	631	361(57.2%)
5) Sex		
Male	306	183(59.8%) ^a
Female	990	546(55.2%) ^a
Different letter (a, b) along co	olumns signify the presence of	f significant difference

Results (cont'd...)

Prevalence by grazing land, season and altitude (November 2003 - October 2004 (n=1296)

	Dry season (prevalence rate (%)			Wet season (prevalence rate (%)					
Grazing Land	Highland	Mid-Altitude	Lowland	Total	Highland	Mid-Altitude	Lowland	Total	Overall total
Irrigated grazing land	64.5 ^a	57.3 ^a	58.3 ^a	61.1 ^a	64 ^a	54.4 ^a	61.5 ^a	60.3 ^a	60.8 ^a
Non-irrigated land	57.3 ^a	37.3 ^b	32.1 ^b	41.8 ^b	63.5 ^a	52.9 ^a	55 ^b	58.1 ^a	50.4 ^b
Total	62.3	47.9	46.9	53.6	63.7	53.8	58.4	<mark>59,2</mark>	56.3
Different letters (a, b) along columns signify the presence of significant difference ($n < 0.05$)									

Results (cont'd...)

Feacal *Fasciola* egg output (Mean±S.E.) (n=729)

Category	Number positive	Mean±S.E.
1) Altitude		
Highland	333	270±1.06 ^ª
Mid-altitude	154	188±1.09 ^b
Lowland	242	170±1.07 ^b
2) Season		
Dry	370	162±1.06 ^a
Wet	359	260±1.06
3) Grazing land		
Irrigated	445	237±1.05
Non-Irrigated	284	178±1.06
4) Age		
Young	368	251±1.06 ^a
Adult	361	182±1.05 ^b
5) Sex		
Male	183	218.77±1.09 ^a
Female	546	213.80±1.05 ^a
Different letters (a,b) along	columns signify the preser	

Results (cont'd ...)

Effects of strategic anthelmintic treatment (November 2003 - October 2004) (n=80)

Treatment groups	No.	Indicator parameters (Mean±S.E.)			
	exam.	EPG	PCV (%)	Body wt.	BCS
				gain (kg)	
Group I (once)	23	0.35±1.55 ^b	3.56±1.16 ^b	0.90±0.73 ^ª	0.17±0.08 ^a
Group II (twice)	28	0.03±1.32 ^c	6.50±1.28 ^b	4.10±0.76 ^b	0.57±0.09 ^{-b}
Group III (Untreated control)	29	3.09±1.26 ^a	-2.03±0.9 1 ^a	0.27±0.90 ^a	-0.02±0.05
Total	80	0.32±18.20	2.56±0.76	2.30±0.49	0.24 <mark>±0.05</mark>
Different letters (a, b and c) along columns signify the presence of significant					

Results (cont'd...)

Estimated economic benefits from strategic treat.*

Groups	Body weight gain (BWG) (Kg)	Approximate unit price of BWG (Kg)	Gross value Birr	Net value Birr
Group I	0.9	6.82	6.14	5.24
Group II	4.1	6.82	27.96	26.16
Group III	-0.27	6.82	-1.84	-1.84

*Price of TCBZ = birr 0.90/300mg (1 bolus)

Conclusions

As compared with mid-altitude and lowland areas, the highland grazing areas are more favorable for the propagation and activity of the snail intermediate hosts and progression of the life cycle of *Fasciola spp*. for most months of the year.

There was no significant difference in the prevalence of fasciolosis between season and the grazing land types (irrigated and non-irrigated) in the highlands.

Conclusions (cont'd...)

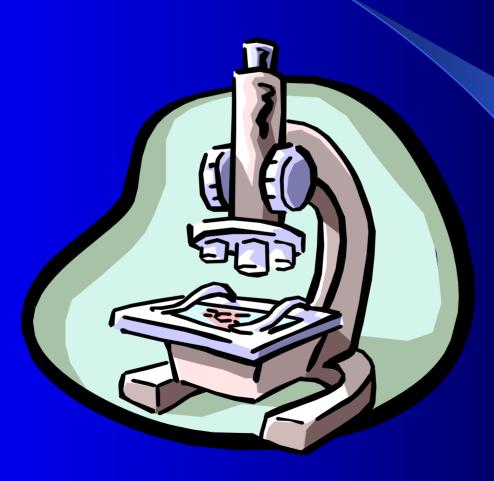
- Significant increase in fasciolosis prevalence associated with irrigation was observed
 - Mid-altitude = during dry season
 - ✓ lowland = during dry and wet seasons
 - Irrigation influences prevalence of fasciolosis in moisture deficient areas and seasons
- Economic benefits of different levels of strategic treatment showed that twice treatment conferred a net-profit of 26.16 birr/sheep and one-time treatment provide a net profit of 5.24 birr while no treatment showed a loss of 1.84 birr/sheep.
- Smallholder farmers have also appreciated the added nonmonitory values.

Recommendations

Proper management of community based irrigation schemes is necessary in order to reduce the losses due to ovine fasciolosis

- Strategic anthelmintic treatments must be applied at appropriate times, and with the aim of reducing worm burden from infected animals and to reduce pasture contamination.
- Twice (Triclabendazole 10mg/kg BW) treatment was confirmed to be most economical and is recommended in the context of smallholder mixed crop-livestock system in the highlands of Ethiopia.

Recommendations(cont'd...)


Small holder farmers and development agents should be aware of the importance of strategic anthelmintic treatment (administered it at the right time) = improve the productivity.

Need to institute a GIS based surveillance system
 Predict the occurrence of fasciolosis
 Monitor the success/failure of the control intervention put in place

Acknowledgment

- Drs. Yilma Jobre, Don Peden, Beyene Petros, Yoseph Shiferaw and Girma Taddese
- ILRI- financial & supervisory support
- HARC (EARO) Laboratory facilities
- ILRI and AAU = Institutional support
- Technical and field assistance

