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SUMMARY
Where conventional wastewater treatment is lacking, 
and water in streams and rivers used for crop irrigation is 
heavily polluted, alternative or additional options for health 
risk reduction are needed. The 2006 edition of the World 
Health Organization (WHO) guidelines for the safe use of 
wastewater, excreta and greywater in agriculture support 
such a multiple-barrier approach. On-farm treatment 
constitutes one of these barriers, and although it can hardly 
replace conventional treatment, it can contribute to risk 
reduction, especially if combined with other barriers such 
as safe irrigation practices and post-harvest crop washing.
 
On-farm treatment options are based on the same processes 
as those used in conventional wastewater treatment, such 
as sedimentation, flocculation, filtration and natural die-
off. This paper illustrates a selection of options for safer 
wastewater and greywater irrigation as well as excreta use, 
with particular reference to studies in West Africa.
 
The paper shows that ‘small-scale’ and ‘low cost’ are not 
necessarily roadblocks for setting up effective farm-based 
treatment systems. A larger challenge is to understand how 
best to facilitate any required behavior change by farmers to 
adjust their farming practices. Participatory on-farm research 
will be needed to study risk perceptions and awareness, 
as well as production factors influencing the adoption of 
treatment options, such as tenure security and additional 
cost, and land or labor requirements. Interventions which 
can build on farmers’ current practices, such as on-farm 
storage ponds or river bank filtration, will probably have the 
highest potential of acceptance. 
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INTRODUCTION
Fecal contamination of urban and peri-urban water bodies 
is a major health issue in most low- and middle-income 
countries, where population growth exceeds the rate of 
development of wastewater or fecal sludge collection and 
treatment infrastructure. Estimates show that 80-90% of all 
wastewater generated in developing countries is discharged 
without appropriate treatment into surface water bodies 
(Corcoran et al. 2010), thereby causing, for example, 75% 
of the known water pollution in India (NUSP 2008). As these 
highly polluted waters are used for irrigation in and around 
four of five cities across low-income countries, the likelihood 
of the transmission of excreta-related diseases to farmers 
and, for example, vegetable consumers is very high (Raschid-
Sally and Jayakody 2008). The same applies to West Africa, 
where high levels of fecal contamination of water sources and 
vegetables in urban farming sites have been reported across 
the region (Amoah et al. 2011; Okafo et al. 2003; Niang 1999).
 
To address these risks, the expansion of sewer systems 
and treatment capacity remain a high priority for municipal 
authorities. However, major progress in sanitation investments 
continues to be outpaced by population growth, and the 
average level of wastewater collection and treatment remains 
below 10% in most African countries (WHO-UNICEF 2010; 
USEPA 2012). Complementary options for safeguarding 
public health are needed until better alternatives are available. 
These options can range from safer irrigation practices 
to crop restrictions or post-harvest handling, and should 
ideally be combined to form multiple barriers for cumulative 
risk reduction (Amoah et al. 2011; Bos et al. 2010). Where 
industrial development and chemical contamination remain 
localized, these barriers should focus on reducing pathogen 
loads in irrigation water and on crops eaten raw1. In 
particular, treatment should aim at reducing levels of intestinal 
nematodes, especially Ascaris lumbricoides, and viral and 
bacterial loads, which pose the most significant health risks 
to farmers, consumers and those living close to wastewater-
irrigated farming sites (WHO 2006a).
 

This report reflects on on-farm treatment as one of the 
possible barriers. It presents an overview of some low-cost 
wastewater treatment technologies for pathogen removal, 
which can be adapted for use in urban and peri-urban 
areas in low-income countries. It also highlights some 
practical experiences in using these technologies in real 
farm situations, and from pilot research being conducted 
in West Africa and other regions. 

With a few exceptions (which target backyard gardens 
or similar controlled environments where black water 
and greywater remain separate), the report does not 
differentiate between wastewater and greywater. This is 
because, in the context of most low-income countries, 
greywater gets contaminated with fecal matter (by open 
defecation or ‘flying toilets’) on its way through storm water 
gutters, canals and streams before being used on open 
spaces by urban or peri-urban farmers. In this context, 
there is no clear boundary between raw wastewater, diluted 
wastewater and polluted stream water. So, treatment 
options should be robust enough to cope with a broad 
range of water quality characteristics. 

Although this report has a technical focus, we would like to 
stress the importance of the biophysical, socioeconomic 
and cultural environment under which we are operating. 
The conditions which influence farmers to eventually 
adopt any on-farm treatment option have to be carefully 
analyzed before any technical trials are commenced. 
These conditions vary from one farming site to another 
(even within the same city), can differ greatly in terms of 
irrigation water source, water quality, tenure security, plot 
size, vegetables grown, irrigation method, soils, etc., and 
maybe, most importantly, risk awareness and perception 
of farmers. All these conditions have to be analyzed 
carefully to ensure that suggested technologies for on-
farm treatment are appropriate for a specific site and target 
group of farmers.

1 Options to address heavy metal contamination on farm are generally limited (Simmons et al. 2010). Therefore, all efforts are needed to implement source treatment in instances where, for 
example, tanneries release chemically contaminated effluent as is the case in West Africa, for example, from Kano and Ouagadougou.
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Where conventional wastewater treatment is not possible 
before irrigation, or its effectiveness questionable, 
understanding how treatment works, especially the 
mechanisms for pathogen removal, is helpful in developing 
appropriate technologies which can be applied on farm 
to improve the quality of irrigation water. Most low-cost 
treatment systems take advantage of natural processes that 
occur when water, soils, plants, microorganisms and the 
environment interact (Parr et al. 2002; Metcalf and Eddy, Inc 
1995), such as sedimentation and flocculation, filtration and 
natural die-off. 

Conventional wastewater treatment is carried out to 
remove as much of the pollutants and pathogens in 
wastewater as possible to minimize public health risks and 
negative environmental impacts. The processes involve 
screening to protect pumps from large materials and 
grit removal (preliminary treatment), and sedimentation 
of suspended solids to reduce the organic load (primary 
treatment). Secondary treatment entails the biological 
decomposition of organic material and pathogens to 
produce a clear effluent and solid biomass for removal. 
This can be achieved aerobically, for example, through 
trickling filters or suspended growth (activated sludge), or 
anaerobically in waste stabilization ponds. For pathogen 
removal, which is the main concern in West Africa, low-cost 
process technologies such as aerated lagoons and waste 
stabilization ponds are well suited and easy to maintain, 
although they demand more land than compact treatment 
systems (Scheierling et al. 2010; see also Table 1). Tertiary 
treatment targets nutrients, toxic compounds and further 
pathogen destruction through different processes, such 
as membrane filtration, flocculation and disinfection 
(Metcalf and Eddy, Inc. 1995). Most treatment systems 
in Africa only have two levels (primary and secondary 
treatment), but are often in poor state and operate far 

below the design capacity (Murray and Drechsel 2011). 
Although pathogen reduction rates will be smaller in farm-
based systems than in professional treatment plants, the 
cost effectiveness of on-farm treatment can be very high 
(Drechsel and Seidu 2011). 

The following sections will describe the systems applicable 
to the on-farm treatment of wastewater, in part, even on 
very small farm plots. The processes used for pathogen 
reduction are largely the same as those used in conventional 
wastewater treatment. 

ON-FARM POND 
TREATMENT SYSTEMS
Wastewater treatment ponds are one of the best-known 
treatment systems which are especially suitable for low-
income countries due to their low costs, low energy and 
maintenance needs, and high performance based on 
‘natural’ processes (Arthur 1983; Mara 2004).

Ponds improve water quality by allowing settlement of 
particles and pathogens (sedimentation process), and 
also exposing pathogens to the environment. Settlement 
times of particles and pathogens differ depending on 
their sizes and densities (Sengupta et al. 2012; Peterson 
2001). For example, while some larger and denser 
types of helminth eggs may take a few hours to settle, 
the comparatively lighter and smaller viruses may take 
hundreds of years to settle in water. Therefore, wastewater 
sedimentation ponds are better at removing helminth eggs 
and protozoans than bacteria and viruses (Mara 2004). 
Nevertheless, bacteria and viruses can also be removed 
through sedimentation, when mainly adsorbed on large 
particles (Karim et al. 2004). 

TABLE 1. RATINGS FOR PATHOGEN REMOVAL AND SET UP CRITERIA OF VARIOUS WASTEWATER TREATMENT 
SYSTEMS.

PACKAGE 
PLANT 

ACTIVATED 
SLUDGE 
PLANT 

TRICKLING 
FILTER

EXTENDED 
AERATION 
ACTIVATED 
SLUDGE 

OXIDATION 
DITCH 

AERATED 
LAGOON 

WASTE 
STABILIZATION 
POND 

Fecal coliforms Poor Poor Poor Fair Fair Good Good 

Helminths Poor Fair Poor Poor Fair Fair Good 

Viruses Poor Fair Poor Fair Fair Good Good

Simple 
operations

No No Fair No Fair No Yes

Land demand Low Low Low Low Low Fair High

Source: Adapted from Arthur 1983.

LEARNING FROM CONVENTIONAL  
WASTEWATER TREATMENT
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FIGURE 1. INTERCONNECTED PONDS FOR FETCHING WATER: (A) DUGOUTS CONNECTED THROUGH A TRENCH IN 
OUAGADOUGOU, BURKINA FASO; AND (B) CONCRETE RESERVOIRS CONNECTED THROUGH PIPES IN LOMÉ, TOGO. 

Shallow ponds exposed to sunshine reveal bacteria and 
viruses to unfavorable environmental conditions, such as 
high temperatures, changes in pH or long exposures to 
ultraviolet (UV) radiation, all of which enhance natural die-off 
(Marais 1974; Silverman et al. forthcoming). In addition, there 
is also high competition for survival from already adapted 
microorganisms which are supporting die-off. According to 
Feachem et al. (1983), in warm climates, most bacteria only 
survive up to 30 days in water, and less than 20 and 15 days 
in soils and on crops, respectively, while Helminth eggs can 
survive many months. 

Common On-farm Ponds Used in 
West Africa
In many West African countries, smallholder farmers in urban 
and peri-urban areas use pond systems, such as shallow 
ponds, dugouts, drums or concrete tanks, for water storage. 
Dugouts and ponds might collect surface flow or subsurface 
flow near streams, function as storage reservoirs for pumped 
drain or stream water, or simply reduce walking distances 
to water sources where watering cans are the means of 

Source: IWMI.

Source: IWMI.Source: IWMI.

Source: IWMI.

irrigation. Where the slope allows, farmers might link their 
ponds or reservoirs via narrow trenches or pipes in a network, 
which can further reduce manual water transport (Figure 1). 

To facilitate water collection from smaller wastewater 
drains or streams, farmers block the natural water flow with 
sandbags or other materials to create deeper pools suitable 
for fetching water with watering cans or to lift the water table 
so that the water can flow by gravity to the field. Farmers 
often create cascades of small dams along the fields. 
Although these systems are not meant for water treatment 
(http://youtu.be/f_EnUGa_GdM), they support sedimentation 
and can become part of training modules for health risk 
reduction (http://www.youtube.com/watch?v=Aa4u1_RblfM). 

In some areas, where there are larger farms, farmers use 
mobile drums, poly tanks or even concrete tanks (Figure 2), 
which are located close to plots, to store water and use it 
when needed. These tanks and drums reduce water losses 
due to soil infiltration compared to un-lined ponds. Table 2 
shows the most common forms of pond-based systems 
used in West Africa. 

FIGURE 2. (A) MOBILE, AND (B) STATIONARY IRRIGATION WATER TANKS, AS SEEN IN OUAGADOUGOU, BURKINA FASO.

http://youtu.be/f_EnUGa_GdM
http://www.youtube.com/watch?v=Aa4u1_RblfM
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Removal of Microbial Loads
Sedimentation requires an un-disturbed retention time. 
The frequency of fetching water is, therefore, important. 
The frequency depends on crop water requirements and 
is closely linked to the climate. In hot climates, such as in 
Ghana, farmers irrigate exotic vegetables, such as lettuce, 
early in the morning and late in the evening, especially in 
the dry season, while once a day might be sufficient in the 
cloudier rainy season. When farmers use a single pond, 
particles in the pond water can thus settle for only 8 hours 
during the day and 13 hours overnight in the dry season. In 
a different climate, such as in Ethiopia, irrigation frequency 
can allow longer intervals of 2-3 days. These longer intervals 
allow for some sedimentation, especially of helminth eggs, 
in the ponds, and if human disturbance and re-suspension 
are minimized, some improvements in water quality can be 
achieved. Results from experimental field trials in Kumasi 
showed that, over a period of 2-3 days, sedimentation 

levels of helminth eggs found in watering cans were down 
to less than 1 egg per liter, accompanied by a fecal coliform 
removal of up to 2 log units per 100 ml (Keraita et al. 2008a; 
Figure 3). Fecal coliform removal was lower during the rainy 
season probably due to less sunshine exposure. However, 
in hot climates with frequent irrigation, ideal removal rates 
cannot be expected and additional measures are needed to 
minimize disturbance and enhance the retention time.

Improving Treatment Capacity of 
Existing On-farm Ponds
Keraita et al. (2008a, 2010) recommended a number 
of measures that can enhance the treatment capacity 
of ponds built by farmers. These include improving the 
design of ponds, creating additional ponds, and training 
farmers on how to collect water with minimal disturbance 
will be beneficial for their own health and also on the 
sedimentation process. Since adding such a ‘treatment 

TABLE 2. OVERVIEW OF FARM-BASED POND SYSTEMS IN SMALLHOLDER AGRICULTURE. 

ON-FARM WATER STORAGE PONDS IN-STREAM PONDS COMBINED POND SYSTEMS

Description Small ponds, soil dugouts, drums 
or concrete tanks used for interim 
wastewater storage. Usually, water is 
fetched from these reservoirs using 
watering cans. They are filled with the 
help of small motor pumps.

To ease fetching water in wastewater 
drains and streams, farmers block 
the water flow with sandbags or other 
materials to create pools. Common 
methods are cascades of such 
barriers along the farming area.

Where the slope allows, farmers 
might link their ponds or reservoirs 
via narrow trenches or pipes in a 
network, which can further reduce 
manual water transport.

Area 
requirement 
and/or size of 
ponds

Varies from 1 to 10 m2 surface with 
crop water needs (i.e., crop type and 
climate) and the size of the cropped 
farm area. Depth is usually around 1 m.

Varies widely, but is usually between 
1 and 3 m2. Depth varies between 0.5 
and 1 m.

Individual ponds are usually 
between 0.5 and 1 m deep with a 
surface area of 3 to 5 m2.

Challenges for 
farmers

Where soils are too sandy, concrete 
structures or drums are needed.
Water contact where farmers step into 
ponds for fetching.

Sandbags commonly washed away 
after heavy rains. 
Water contact where farmers step 
into streams.

Structure requires maintenance 
during and after the rainy season.
Water contact where farmers step 
into ponds.

FIGURE 3. FECAL COLIFORM AND HELMINTH EGG REMOVAL OVER TIME IN ON-FARM PONDS IN KUMASI. 
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objective’ to ponds is likely to affect labor and space 
requirements (Table 3), changes have to remain modest to 
maintain farmers’ cooperation.

Keraita (2010) suggested additional measures that enhance 
sedimentation using, for example, natural flocculants such 
as Moringa oleifera2 seed extracts, and measures that can 
influence pathogen die-off at farm-level, such as sunlight 
intensity, temperature, crop type, etc.
 
Frequent pond usage will undermine the accumulation 
of pathogenic microorganisms with the settled sediment. 
Where farmers step into the water, or the watering can hits 
the ground of a shallow pond (Figure 2), the settlement 
process is disturbed and helminth eggs are again floating at 

a shallow depth. This challenge concerns helminth eggs, in 
particular, but also, for example, fecal coliforms. Van Donsel 
and Geldreich (1971), for example, stated that 100-1,000 
times more fecal coliforms were recovered from sediments 
than in the overlying water. To avoid this situation, different 
options can be applied as further illustrated by Keraita et al. 
(2010) and Amoah et al. (2011). These include the use of 
self-made stairs or a wooden log across the pond (Figure 
4(a)) to prevent a farmer from stepping into the pond or 
touching the ground with their cans. Farmers started using 
watering cans connected to a rope (Figure 4(b)) to avoid 
bending over. The additional advantage of this is less skin 
contact with the water. Also, deeper pond design can 
prevent the watering can from touching the sediment layer 
when fetching water. 

2 A very fast-growing tree with multiple purposes and cultivated around the tropics. The pods (drumsticks) and leaves are among the most nutritious foods to be found in the plant kingdom 
(NRC 2006).

3 In Ghana, landowners did not allow wastewater farmers to sink wells to access safer water, because structural investments could be used to claim land rights.

TABLE 3. PRODUCTION FACTORS AFFECTED BY ALSO USING ON-FARM STORAGE PONDS FOR WATER TREATMENT.

FACTORS WATER STORAGE FUNCTION WATER TREATMENT FUNCTION

Personal exposure Common during fetching water, but seldom 
recognized as a threat

Can be minimized, as discussed in the text

Space requirements Limiting factor as plot sizes in urban areas are 
usually very small

Significant constraints for recommended multi-pond 
systems

Labor requirements So far, an accepted workload, but often given 
to laborers

Would increase due to modifications in pond depth and/
or number 

Capital requirements Low Remain low

Land tenure security Poor; farmers occupy public or private land 
near streams and drains

Risk factor, as farmers will not invest in structures if the 
returns cannot be secured or they are not permitted to 
invest3.

FIGURE 4. REDUCED WATER CONTACT AND IMPACT ON HELMINTH EGGS ALREADY SETTLED IN THE SEDIMENT. 
A) A FARMER STANDING ON SELF-MADE STAIRS WHILE FETCHING WATER, AND B) A FARMER USING A WATERING 
CAN CONNECTED TO A ROPE TO FETCH WATER (BOTH IN OUAGADOUGOU, BURKINA FASO).

Source: IWMI.Source: IWMI.
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Location: A large vegetable farming site in Accra, where water from polluted streams and drains are the common 
sources of irrigation water for about 100 farmers. Individual ponds and networks of interconnected ponds are 
common (Figure 5). Networks are managed by two to over 20 farmers depending on their size. 

Technology description: The network of ponds used for fetching water allows the settling of helminth eggs 
and a reduction in fecal coliform counts, if water retention lasts long enough. A natural fecal coliform removal of 
about 2 log units from the wastewater source to the last pond of the network was used as the baseline. Design 
modifications were tested, which aimed at doubling the water volume, reducing rapid flow and extending overall 
water retention time in the systems from 1 to 2 days. Trenches were widened slightly and ponds were deepened. 
Some stairs were built to facilitate water fetching without the risk of touching the sediment. Simple hardwood 
baffles were placed in transit ponds (Figure 5) to increase the retention time of the water. Since helminths were not 
a problem on this site, the impact of the changes was difficult to quantify.

Required inputs: Mostly labor for construction (two man-days) and some wood used as construction materials, 
summing up to a maximum total of USD 50.

BOX 1. PARTICIPATORY ON-FARM RESEARCH TO IMPROVE POND NETWORKS IN ACCRA, GHANA.

FIGURE 5. (A) AERIAL VIEW OF THE SITE, AND (B) HARDWOOD BAFFLES INSTALLED TO INCREASE RETENTION 
TIME OF THE WATER.

Source: IWMI, after Reymond et al. 2009.

Adoption and out-scaling potential: Important site-specific criteria required to maintain farmers’ cooperation 
included available space, sufficient tenure security to allow infrastructure set-up and an adequate slope to allow 
flow by gravity for interconnected systems. Given the load of two 15-liter watering cans, 50 beds per farmer and 
10 watering cycles per bed over the day, every reduction in transport and labor was welcomed by the farmers.

PONDS
MAIN STREAM
CONNECTING TRENCHES
EARTH DRAIN
RAILWAY
ELECTRIC POWER STATION
PLAYING FIELD

N

Source: Reymond et al. 2009.

Appropriate measures should consider de-silting ponds 
regularly to reduce the risk of re-contamination from 
sediment. A supporting measure would be to enhance 
water retention time (Box 1), and reduce water loss from 
the pond through infiltration.

Given the limited retention time of only one pond, a multiple 
pond system is recommended where space is available. For 
example, adapting the wastewater storage and treatment 
reservoirs (WSTR) technology, three batch-fed ponds can 
be used in sequence: on any one day, one pond is filled, 
one pond is resting (pathogen die-off/sedimentation) and 
one pond is used (Mara and Pearson 1992). This ‘three-
tank’ system (Table 4) can enhance sedimentation and 
reduce re-suspension, thereby reducing pathogen levels 
in irrigation water (Mara et al. 1996).
 

The investment costs in all these cases are limited to labor 
(especially if a three-tank system is used) and the required 
behavior change of farmers during the fetching of water. 
Cost estimations of any required materials will be below 
USD 50 (Tiongco et al. 2010).

Settled microorganisms and particles can be stirred by farmers 
entering ponds, and even more by pumps when their suction 
pipe hits the sediment. Vegetable farmers across Africa are 
increasingly using small motorized pumps to lift water from 
streams, ponds and wells. Due to the large number of helminth 
eggs found in the sediment slight modifications on the design 
of suction pipes on motorized water pumps could minimize the 
intake of sediment (Keraita et al. 2010). An option might be U- 
or J-shaped suction pipe ends which reduce sediment intake 
(see Figure 6).
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TABLE 4. OPTIONS FOR PATHOGEN REMOVAL IN FARM-BASED PONDS. 

ON-FARM TREATMENT POND THREE-TANK SYSTEM MULTIPLE IN-STREAM OR OFF-
STREAM PONDS

Main 
processes

Sedimentation and ultraviolet (UV) 
exposure.

Sedimentation and UV exposure. One 
pond is being filled, the water in one is 
settling and the settled water from the 
third is being used for irrigation. Pond 
size should exceed daily water needs. 

Sedimentation and UV exposure.
Cascades of in-stream ponds or 
networks of on-farm water storage 
ponds increase the sedimentation 
potential suitable for trapping 
helminth eggs.

Pathogen 
removal

Where ponds are used every day, the 
sedimentation process is disturbed 
and the helmith egg reduction will be 
limited, especially when pond volume 
is small.

One to two days of quiescent settling 
removes almost all helminth eggs and 
a reduction of 1 to 2 log units of other 
pathogens can be achieved. The 
longer the water can ‘rest’ the better.

With more than one barrier, 
sedimentation of helminth eggs 
can be significant. Fecal coliform 
reductions of 2 log units were found 
in Accra. If in-stream sandbags are 
perforated and closely packed, they 
can also function as sand filters.

Challenges for 
risk reduction

 � Re-suspension of settled pathogens 
when farmers step in or stir water 
(need training).

 � Runoff of manure or contaminated 
water into ponds is common.

 � Labor to dig more ponds than 
usually used.

 � See comments under ‘on-farm 
sedimentation ponds’ in the second 
column of this Table.

 � Malaria control (Box 2).

 � Two or more barrier (pond) 
systems are preferred.

 � Schistosomiasis control
 � Labor requirement; see comments 

under ‘on-farm sedimentation 
ponds’ in the second column of 
this Table.

References Keraita et al. 2008a, 2010; Reymond 
et al. 2009.

Mara and Pearson 1992; Mara et al. 
1996.

IWMI 2008a, 2008b.

Sedimentation can be enhanced through flocculation. Table 
5 shows fecal coliforms and helminth eggs settling with time 
after treatment with 3% weight/volume (w/v) of Moringa 
oleifera seed extract, in a field experiment conducted in 
Kumasi (Keraita 2010). The levels of fecal coliforms of un-
treated water had no significant change (8.13 to 8.04 log units) 
after settling for three hours. This showed that sedimentation 
within the period of three hours had no significant effect on the 
removal of fecal coliforms. However, the treated subsample 
showed significant changes over settling time. Levels of fecal 
coliforms reduced by about 4.5 log units over the three hours. 
The reduction showed a linear relationship, y=-0.78x+9.06 
(where y = log units of fecal coliforms and x = time in hours). 
More reduction levels could have been achieved with the 
provision of additional time, as reduction had not reached its 
optimum after three hours. This shows that there is a strong 
influence of Moringa oleifera treatment on the reduction of 
fecal coliforms in wastewater, through its ability to flocculate 
and eventually settle particles to which bacteria are attached 
(as also shown by Ghebremichael 2004).

On the other hand, natural sedimentation for three hours 
reduced helminth eggs by about 24% from 14 to 10.6 eggs 
per liter. When treated with Moringa oleifera, the number of 
helminth eggs in irrigation water reduced exponentially, y = 
22.8e-0.5x (where y = number of helminth eggs and x = time 
in hours), to less than 1 egg per liter. Optimum reduction 
was achieved after 2.0-2.5 hours of sedimentation, after 
which no significant further reduction of helminth eggs was 
recorded. The results show that while natural sedimentation 

has some influence on the removal of helminth eggs, a much 
faster and more significant reduction could be achieved by 
treating irrigation water with Moringa oleifera seed extracts. 
Depending on the level of water pollution, much lower seed 
extract concentrations could be tested as well as differently 
granulated seeds.

Moringa oleifera seed extracts have shown high 
coagulation and antimicrobial activities, when compared 
to alum (Benjamin and Odeyemi 2011). In addition, 
Moringa oleifera extract has the ability to directly act upon 
microorganisms and inhibit their growth (Sutherland et al. 
1990; Cáceres et al. 1991). Although Moringa oleifera is 
very common, especially across Asia and Africa, it might 
not be as abundant as needed in the city and vicinity 
where water pollution is high. Carrying out tests with other, 
locally available plants with similar characteristics, such as 
okra, are encouraged (Agarwal et al. 2001; Srinivasan and 
Mishra 2008).

Use of Weirs and Reservoirs
Though not designed for pathogen removal, some irrigation 
infrastructure, such as weirs (Figure 7) and larger storage 
tanks (reservoirs) in irrigation schemes, can significantly 
improve the microbiological quality of domestically polluted 
water. In the case of the Musi River, which passes through 
the city of Hyderabad in India, the natural remediation 
efficiency of the river system, aided by the construction of 
irrigation infrastructure, particularly weirs, was very high. 
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FIGURE 6. LIFTING INFLOW VALVES OF PUMPS OUT OF THE SEDIMENT (DIAGRAM ON THE RIGHT).
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Many pond-based systems can be potential habitats for snails or mosquito vectors of diseases such as malaria, 
filaria and different types of encephalitis. Contrary to conventional thinking that Anopheles gambiae or Anopheles 
stephensi only breed in rather clean water, there are increasing indications, for example, from Pakistan, Tanzania, 
Nigeria and Ghana, that these malaria vectors also breed in polluted water sources (Mukhtar et al. 2003; Sattler 
et al. 2005). The actual occurrence, however, can vary between seasons, from region to region and on the type 
of wastewater (raw or diluted); therefore, program managers or extension officers should put in place vector 
surveillance plans with the support of the health authorities. In hyper-endemic situations, as in many parts of 
sub-Saharan Africa, (wastewater) ponds might not increase the general risk. However, in meso-endemic areas, 
as in Asia, control measures will be important. These can be natural predators, such as tadpoles, which are often 
present even in smaller ponds. Small ponds could also be covered with netting while larger systems may need 
other methods of biological control, e.g., larvivorous fish such as Tilapia (Homski et al. 1994). Precautions for 
schistosomiasis include, for example, attaching a filter to the pumps used for filling the ponds.

BOX 2. PONDS AS POSSIBLE BREEDING SITES FOR MOSQUITO VECTORS.

Source: Keraita et al. 2010

TABLE 5. REMOVAL OF FECAL COLIFORMS AND HELMINTH EGGS (N=60 SAMPLES) USING A MORINGA SEED 
EXTRACT.

SETTLING TIME
(HOURS)

FECAL COLIFORMS
(LOG OF MPN 100 ML-1)

HELMINTH EGGS  
 (NUMBER OF EGGS LITER-1)

0† 8.13 ± 0.44 14.0 ± 1.1

0.5 7.59 ± 0.91 9.3 ±1.3

1.0 6.79 ± 0.58 5.9 ± 1.7

1.5 5.92 ± 0.42 2.7 ± 1.0

2.0 5.18 ± 0.40 1.4 ± 0.5

2.5 4.14 ± 0.48 1.0 ± 0.4

3.0 3.62 ± 0.27 0.8 ± 0.2

3.0† 8.04 ± 0.52 10.6 ± 0.9

Source: Keraita 2010. 
Note: † Not treated with Moringa oleifera extract; MPN – most probable number. 
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FIGURE 7. RESERVOIR AND WEIR SYSTEMS IN (A) HYDERABAD, INDIA; AND (B) NORTHERN LAOS.

TABLE 6. USE OF IRRIGATION INFRASTRUCTURE FOR PATHOGEN REDUCTION.

WEIRS AND TANKS

Description Water reservoirs and weirs in irrigation canals can facilitate pathogen removal. 
 � In irrigation schemes in Hyderabad, India, weirs, which are used for regulating irrigation water, act as efficient 

traps for helminth eggs.
 � The same principle can apply to dams constructed by smallholders (see Table 2).

Pathogen removal The study along the Musi River showed that over a 30 km stretch of the river:
 � helminth eggs had reduced from a range between 130 and 170 to less than one egg; and 
 � E. coli levels showed a reduction by 3 log units from 7.8 to 4.7 log units per 100 ml over 30 km, and by 4 log 

units over 40 km.

Challenges The positive impact of natural processes for pathogen elimination and options to enhance them via standard 
irrigation infrastructure should be considered before investing in conventional wastewater treatment. 

The design and maintenance of irrigation infrastructure could benefit from consideration of its possible positive 
impact on pathogen levels (e.g., via sedimentation and sediment management). 

References Ensink et al. 2010; Hofstedt 2005.

Source: (a) IWMI, and (b) IWMI, after photo from Institut de recherche pour le développement (IRD). 

Corresponding with an estimated retention time of 2 days, a 
helminth egg reduction level of 80% was measured behind 
the first weir downstream of Hyderabad, and another 80% 
after the second weir. As in treatment ponds, sedimentation 
is also an important process here, resulting in large numbers 
of helminth eggs deposited just upstream of the weirs 
(Hofstedt 2005). Changes in fecal coliform and biochemical 
oxygen demand (BOD) levels were more gradual, but were 
comparable over the stretch of about 30-40 km with the 
treatment efficiency of a well-designed waste stabilization 
pond system (Table 6). Besides sedimentation, other 
natural treatment processes, including the diversion of river 
water over larger areas of paddy, contributed to pathogen 
reduction in this case (Ensink et al. 2010).

FILTRATION SYSTEMS
Similar to pond systems, filtering polluted water is also a 
low-cost option taking advantage of natural processes for 
pathogen elimination. Compared to pond systems it has 
the additional advantage of working even at the smallest 
scale, such as for household water filtration. In this section, 

selected systems for filtering water for direct use on the farm 
are explained. Options for soil filter systems for wastewater 
treatment without reuse, are, for example, described by 
Wyss and Züst (2000).

Pathogen Removal Mechanisms in 
Sand or Granular Filters
Pathogen removal in filtration systems undergoes two 
stages, i.e., retention in the media and then elimination. 
During retention, pathogens are immobilized in the filter by 
straining and adsorption. 

Retention by Straining
Straining involves the physical blocking of movement 
through pores smaller than the pathogens. Figure 8 shows 
the kind of filter required, including different soil textures, to 
strain different kinds of pathogens (USEPA 2001). Straining 
can be improved by enhancing coagulation and flocculation, 
which can be done at a low cost in West Africa by using 
extracts from plant materials such as the seeds of Moringa 
Oleifera (see above). 
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Retention by Adsorption
Figure 8 shows that the pores of a sand filter are not fine 
enough to strain pathogens that are smaller than helminth 
eggs. However, the second dominant mechanism for 
retention is adsorption, where pathogens attach themselves 
to media. In this way, sand filters can also remove bacteria. 
Factors that may influence the adsorption of bacterial cells to 
porous media can be categorized into three groups: physical, 
chemical and microbiological. Physical factors include the 
porous media, presence of organic matter and biofilm, 
temperature and water flow velocity. Chemical factors include 
ionic strength and species, and pH values. Microbiological 
factors include hydrophobicity, chemotaxis and electrostatic 
charges on the cell surface, other cell surface characteristics 
and bacterial concentration (Stevik et al. 2004). 

Elimination 
After being retained in the sand media, pathogens need to 
be eliminated. In biological wastewater treatment systems, 
elimination of pathogens is controlled by many variables. 
These variables may be divided into abiotic and biotic factors.

 � Abiotic factors: These include moisture content, pH, 
temperature and organic matter content. Pathogen 
survives better in moist environments, where pH ranges 
between 5 and 8 and organic matter content is high 
for nutrients, while high temperatures will accelerate 
pathogen die-off. 

 � Biotic factors: Presence of predating microorganisms, 
such as protozoans, will affect pathogen populations 
such as bacteria. 

Having extremes in pH levels in sand (less than 5 and 
more than 8) and using sand with low organic matter (and 
hence nutrient) content, will enhance elimination. Moreover, 
elimination will be better in warm climates due to high 
temperatures. Dark colored sand filtration columns or 

barrels can be used to absorb heat, and thereby increase 
temperatures in the filtration media (Stevik et al. 2004). 

Suitable Filtration Systems for On-
farm Water Treatment
Table 7 presents some common filtration systems that can 
be used for treatment of irrigation water at farm-level, using 
media such as sand, gravel or soil. For conventional water 
and wastewater treatment, slow and rapid sand rate filters 
are widely recognized (Metcalf and Eddy, Inc 1995; Morel 
and Diener 2006). Some of these filters can be adapted for 
use in treating water at farm level (Table 8). 

Organic Filters
Organic filter materials can have a high potential for 
treating diluted wastewater or greywater to achieve 
irrigation quality in low-tech systems (Garzón-Zúñiga et 
al. 2008). Bark, peat and wood chip filters can remove 
organic matter better than sand and trickling filters under 
similar conditions, and can be expected to be resilient 
in dealing with variable low and high organic loads. 
Degradation of filter material was reported when using 
some mulch materials, such as bark (Dalahmeh et al. 
2011). While the organic matter content and surface and 
hydraulic properties of bark filters resulted in high BOD5 
removal rates (94-99%), the process was accompanied 
by the release of dissolved organic substances originating 
from the bark itself (Dalahmeh 2013). Garzón-Zúñiga 
et al. (2008), Garzón-Zúñiga and Buelna (2011), and 
Vigueras-Cortés et al. (2013) reported a high ability of 
bio-filters using, for example, wood chips and local fibers 
(such as agave fiber) to remove pathogens, reaching 3-4 
logs of fecal coliforms and 96-100% of helminth eggs 
from municipal wastewater. Bark filters demonstrated 
1-3 log10 removal of microorganisms (Dalahmeh 2013). 

FIGURE 8. FILTER CLASSIFICATION AND MATERIAL SCALE. 

Scale

Materials

Soil pore size

Soil texture

Filter

0.001 µm 100 µm10 µm1 µm0.1 µm0.01 µm

Reverse osmosis Nano-filtration Ultra-filtration Micro-filtration Sand filter

Clay Silt Sand

Micro pores Meso pores Macro pores

Metal
ions,
salts Giardia cysts Helmith eggs

Bacteria

Pesticides Viruses

Dissolved organic matter

Source: Modified from UNEP 2005.
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The charcoal had a large specific surface area, which 
provided the capacity for intermediate to high levels of 
removal of BOD5 (83-97%), N-tot (50-98%) and P-tot 
(64-98%), but removal of microorganisms was poor. The 
sand filters demonstrated low BOD5 removal (67-91%) 
and high nitrification, but low nitrogen removal. Greywater 
treatment using bark and charcoal filters reduced their 
organic content to acceptable levels for irrigation. 

Slow Sand Filters
Slow sand filters have a long history and are well described, 
especially for drinking water filtration (Huisman and Wood 
1974). Sand filters with low loading rates of 2 to 5 l/min/
m2 are also a possible option for on-farm risk reduction. 
However, not every type and size of sand is suitable. 
Rounded (beach) sand grains of uniform size, when packed 
together, do not produce pore spaces small enough to be 
effective as sand filter media. Crushed rock sand grains, 
when packed together, could fit like puzzle pieces. Their 
varied sizes and jagged edges produce tiny pores small 
enough to filter out pathogens found in water. Gravel pits 
or quarries are the best place to obtain crushed rock. Sand 
should be of correct configuration to support straining but 
lessen clogging (Table 9).
 
As the influent passes through the sand in the filter, most of 
the solid particles are removed within the top 0.5-2 cm of 

TABLE 7. TYPES AND CHARACTERISTICS OF FILTERS USED IN HOUSEHOLD WATER TREATMENT.

TYPE OF FILTRATION MEDIA AVAILABILITY EASE OF USE EFFECTIVENESS 
(COMMENTS)

COST

Rapid rate granular 
media depth filter

Sand, gravel, 
diatomaceous earth, 
coal, other minerals

High Easy to moderate Moderate* (depends 
on microbe size and 
pre-treatment)

Low to moderate

Slow sand filter Sand High Easy to moderate 
(community use)

High**, in principle, 
but often low, in 
practice

Low to moderate

Vegetable and 
animal-derived 
depth filters

Coal, sponge, 
charcoal, cotton, 
etc.

Medium to high Moderate to difficult Moderate* Low to moderate

Fabric, paper, 
membrane, 
canvas, etc., filter

Cloth, other woven 
fabric, synthetic 
polymers, wick 
siphons

Varies: Low to high Easy to moderate Varies from high to 
low (with pore size 
and composition)

Varies: Low for 
natural media; high 
for synthetics

Ceramic and other 
porous cast filters

Clay, other minerals Varies: High to low Moderate Varies from high to 
low (with pore size 
and ceramic filter 
quality)

Moderate to high

Septum and body 
feed filters

Diatomaceous earth, 
other fine media

Varies Moderate to difficult; 
dry media is a 
respiratory hazard

Moderate Varies

Source: Adapted from Sobsey 2002.

Notes: * ‘Moderate’ typically means 90-99% reduction of larger pathogens (helminth ova and larger protozoans) and solids-associated pathogens, but low (< 90%) 
reduction of viruses and free bacteria, assuming no pre-treatment has taken place. With pre-treatment (typically coagulation), pathogen reductions are typically > 
99% (high). ** High pathogen reduction means > 99%. 

sand. With time, this area develops a biological film called 
the ‘schmutzdecke’ (dirt blanket). This blanket supports 
a substantial reduction in the number of pathogens 
(Huisman and Wood 1974). The schmutzdecke, which 
consists of algae, bacteria and zooplankton, has to remain 
wet. Therefore, the filter outlet level has to be above the 
level of the sand. This always ensures that the filter bed 
does not dry out. On the other hand, it should not become 
anaerobic. Typical pathogen removal range, reported by 
WHO and based on a review of several studies for slow 
sand filters, is 0-3 log units for bacteria and 1-3 log units 
for helminths (WHO 2006a). Combinations of flocculation 
with Moringa oleifera and sand filters to increase straining 
have been described by Benjamin and Odeyemi (2011).

Farmers in Ghana were mostly concerned that any 
technology change might negatively affect the efficiency 
of their work. In this regard, filters have the natural 
disadvantage of slowing down water flow. From the 
experimental filters tested in Kumasi (Box 3), an average 
of 3 m/day of filtrate could be obtained from each 0.17-
m diameter filter, resulting in 0.068 m3/day. Assuming 
that the filter works for 300 days in a year (65 days for 
maintenance), it could provide approximately 20 m3 of 
water in a year. Irrigation water requirements in Kumasi 
for similar farming practices were calculated to be 362 
m3/yr for a 0.1 ha plot (Keraita 2002). As the plot sizes on 
urban vegetable farms range between 0.02 and 0.1 ha 
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DESIGN CRITERION SLOW SAND FILTERS RAPID SAND FILTERS

Filtration rate   2.5-6.0 m/day                          100-300 m/day

Sand media
Depth 0.5-1.5 m Same
Effective size 0.15-0.4 mm  1.3-1.7 mm

Uniformity coefficient 1.5-3.6 1.2-1.7

Gravel media

Depth 0.2-1 m Same
Graded Fine to coarse (top to bottom)  Same

Sources: Letterman 1991; Cleasby and Logsdon 1999; UNEP 1997.

TABLE 9. TYPICAL DESIGN CRITERIA FOR SAND AND GRAVEL FILTERS. 

SLOW SAND FILTERS GRAVEL AND SAND 
FILTERS 

ORGANIC FILTERS RIVER BANK 
FILTRATION

STRAINERS 

Description Used, for example, 
in water containers 
feeding drip 
irrigation systems, 
where unfiltered 
wastewater 
tends to clog 
the drip outlets. 
Sand should 
be of correct 
configuration, i.e., 
effective size of 
0.15-0.40 mm 
and uniformity 
coefficient of 1.5-
3.6. 

Used in confined 
soil trenches, 
e.g., to treat 
greywater from 
small streams or 
households before 
irrigating crops 
and flowers. 

Wood chips, bark, 
peat, wheat straw 
and, for example, 
corncob are 
used as ‘mulch 
filters’ for treating 
wastewater and 
greywater. A 
down-flow-mode 
vertical filter is a 
common setup.

Wells are dug 1 
to 5 meters away 
from wastewater 
streams or canals, 
with the aim of 
collecting shallow 
groundwater 
as observed in 
Burkina Faso, Mali 
and Ghana. Canal 
water passes 
through the soil to 
the well following a 
hydraulic gradient 
and is filtered in 
the process.

In Togo, Ghana 
and Senegal, 
farmers use 
various materials 
such as mosquito 
netting to prevent 
particles, such as 
algae, waste and 
organic debris, 
from entering the 
watering cans 
while fetching 
water. Filtration 
materials are 
also attached to 
pumps. 

Pathogen 
removal

0-3 log units 
for bacteria and 
1-3 log units for 
helminth eggs 
(WHO 2006a). 
In Ghana, 0.5-1 m 
deep column sand 
filters removed 
about 2 log units of 
bacteria and 71-
96% of helminth 
eggs.

Gravel under 
anaerobic 
conditions 
facilitates 
biological 
treatment with 
retention times 
of 2-3 days. 
Pathogens and 
total suspended 
solids (TSS) were 
reduced to 50%.

Depending on 
material used, 1-4 
logs for coliforms 
(e.g., by predatory 
activity of 
amoebas) and > 
96% for helminth 
eggs. 

Pathogen removal 
depends on soil 
properties (texture) 
and subsurface 
flow distance.
Most effective 
for larger 
pathogens, such 
as protozoans 
and helminths, 
but less effective 
for removal of 
bacteria and 
viruses.

Positive side-effect 
is that pathogens 
adsorbed on 
to the sieved 
organic matter 
are removed. 
Depending on the 
kind of matter and 
pathogen load, 
removal levels of 
up to 1 log unit for 
bacteria and 12-
62% for helminths 
were observed 
with normal nylon 
cloth.

Challenges Clogging of the 
filtration medium 
(sand) makes 
frequent cleaning 
or replacement 
necessary.

Depending on 
location, cleaning 
to prevent odors 
and clogging of 
the gravel media 
that occurs with 
time.

Degradation and 
disintegration of 
the filter can lead 
to decreasing 
service lifetime of 
the filter.

Cracks in soil 
structure or 
termite tunnels 
can allow 
pathogens to pass 
through without 
being filtered.

The finer the 
cloth the better 
the egg removal, 
but the water 
flow is slower, 
affecting farmers’ 
work efficiency. 
Continuous 
removal of filtered 
residues.

References Keraita et al. 
2008c; Metcalf and 
Eddy, Inc 1995; 
WHO 2006a

Bino et al. 2008; 
WQSD 2009

Dalahmeh et al. 
2011; Dalahmeh 
2013; Garzón-
Zúñiga et al. 2008

Cornish and 
Lawrence 2001

Keraita et al. 
2008c, 2010.

TABLE 8. OVERVIEW OF ON-FARM FILTRATION SYSTEMS.
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per farmer, a filtration system of 0.15 to 0.75 m in diameter 
with some simple storage tank can suffice. This system will 
cost about USD 50-100. Assuming a system life span of 5 
years, and based on the calculated net revenue of between 
USD 400-800 annually (Danso et al. 2002), the system cost 
will be less than 5% of the total revenue. For larger irrigation 
water volumes, the filter size could be increased.

River Bank Filtration
A common system across West Africa is wells that are dug 
20-60 m away from a canal, stream or river carrying highly 
polluted water (Figure 10). The resulting soil-based (river bank) 
filtration (Singh et al. 2010; Dash et al. 2010) is, however, 

In Kumasi, Ghana, IWMI tested slow sand filters on farms to improve water quality for farmers using irrigation water 
with high levels of fecal contamination (Keraita et al. 2008c). They were monitored for 5 weeks and assessed for 
the removal of helminths and fecal coliform bacteria. Common sand used for house construction was washed 
and used as filtration media.

Flow rates averaged 3 m/day, though there was a steady decrease with filtration time, decreasing to 1 m/day 
from the 4th week. The filter with the shortest sand column of 0.5 m clogged in the 2nd week while the operational 
filters (0.75 - 1.0 m sand depth) removed up to 3.5 log units of fecal coliforms. Sand depths had no influence on 
the removal, but the higher the pathogen levels in the irrigation water, the higher the rate of removal. For helminth 
eggs, from the 2nd week, weekly removal averages of more than 80% were recorded for filters that did not clog 
over the 5 weeks (Keraita et al. 2008c). Proper selection of sand and better washing is likely to reduce clogging 
rates. Figure 9 shows a possible set-up on farm which could also be combined with drip kits.

FIGURE 9. POSSIBLE ON-FARM SET-UP FOR SLOW SAND FILTERS.

Source: IWMI.

only a side effect for farmers who are more interested in 
reducing the walking distance, time and labor needed for 
water collection. Wastewater from the stream infiltrates the 
surrounding soil, and gets filtered on its way towards the 
well. Depending on distance and soil texture (sand, silt, clay), 
pathogen removal for viruses and bacteria differs strongly 
but should be at least 1-2 log units. The system is probably 
most effective in removing helminths and reducing turbidity 
in irrigation water. The distance between the well and the 
wastewater canal varies; the further the distance, less water 
might reach the well, although there will be an improvement 
in water quality. These wells can be very simple and have 
typical diameters ranging from 0.5 m to about 1.5 m. Their 
depth will have to consider the water table of the stream. 

BOX 3. TESTING SAND FILTERS FOR PATHOGEN REMOVAL.
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A number of water-lifting devices are used in such wells. 
In relatively high water tables, farmers manually draw 
irrigation water with a bucket and rope system (Figure 
11). This is a very simple, cheap and traditional method. 
An improvement to this is the use of the treadle pump 
system, which involves manual peddling and water can 
be lifted from a depth of up to 7 m. Farmers with large 
farms and more stable incomes use diesel pumps. These 
pumps have a built-in filtration system for removing coarse 
materials. Water can be stored in simple structures before 
being used, used straight after lifting or concurrently if a 
pump is available.

Several other systems supporting water filtration have 
been developed by farmers in West Africa. For example, 
wastewater is allowed to pass through sand-filter trenches, 
sand embankments, or simple sandbags as farmers 
channel irrigation water to storage ponds. These types 
of filters will mostly remove larger organisms such as 
protozoans and helminths and could be an entry point for 
participatory technology development (Box 4).

Trench Filter Beds and Constructed 
Wetlands 
More sophisticated, but still low-cost, filtration systems 
include the confined trench filter as tested, for example, 
across Jordan. This system has been tested successfully 
over several years to treat greywater to the standards 
needed for restricted irrigation of tree crops, such as olives, 
fruit trees or horticultural crops. The tested treatment media 
included gravel and intermittent sand filter (Bino et al. 2008), 
as well as volcanic tuff (Boufaroua et al. 2013). Some 
examples of the filtration systems tested across Jordan are 
given below:

 � Downstream of the Jerash camp, greywater from a 
nearby stream is diverted through a tube to the trench. 
As shown in Figure 12, the water enters the trench in 
the back section, where the transparent plastic sheet 
is perforated to allow for water infiltration. From there 
the water moves slowly by gravity through gravel layers 
towards the container in front. The confined trench is 
lined with a dark impermeable plastic sheeting about 400 
microns thick and is filled with gravel (WQSD 2009).

 � In a similar confined trench system in Karak, about 3 m3 

FIGURE 10. SCHEMATIC DIAGRAM OF A WASTEWATER INFILTRATION WELL SYSTEM AS SEEN IN BURKINA FASO.

FIGURE 11. SIMPLE WELL STABILIZED WITH RUBBER 
TIRES CLOSE TO A POLLUTED STREAM. WATER IS 
FETCHED WITH A BUCKET AND ROPE.

POLLUTED
CANAL

WELL
0.5-1.5 M WIDE

SOIL FILTRATION
20-60 M FROM WELL TO CANAL

WELL DEPTH BELOW CANAL WATER TABLE

Source: IWMI.

Source: M. Dougherty.
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are filled with gravel as the filtration medium (Figure 13). 
The designed retention time is 2-3 days, after which the 
filtered water enters the outlet barrel through a perforated 
lower part. From here, the water is pumped into a larger 
tank supporting an olive irrigation system. One such unit 
can treat up to 240-300 liters a day, which is sufficient to 
irrigate about 20 olive trees throughout the year. Fecal 
coliform counts remained within allowable limits for 
restricted irrigation (Bino et al. 2008).

 � A related system to treat an average flow of 150 liters/
day of greywater effluent from a single household in 
the Badia area, combined a 1 m3 septic tank and an 
intermittent sand filter (6 m2, about 1 m deep). The 
treatment efficiency of BOD5, COD, TSS and E. coli 
were around 90% (Assayed et al. 2010). The quality of 
treated greywater complied with the Jordanian standards 
for reclaimed wastewater reuse for restricted irrigation. A 
smaller treatment bed of 4 x 1 m was used in the Madaba 
area by Boufaroua et al. (2013), who added a grease filter 
in front of the inlet barrel. 

 � Where space is limited, a sand filter-based filtration unit 
could also be set up vertically (Figure 14) as tested by the  
International Center for Agricultural Research in the Dry 
Areas (ICARDA) and the National Center for Agricultural 
Research and Extension (NCARE) in Jordan, as part 
of their project on “Community-based interventions for 
productive use of grey water in home farming.” The 
vertical systems facilitate oxygen distribution, overcome 
the saturation problem (which occurs in traditional sand 
filters) and, most of all, reduce the space requirements 
of the treatment system, which make it suitable for 
rooftop farming. Significant reduction of BOD5 and TSS 
were noticed between the first drawer and the second 
drawer only, while 2 log units of fecal coliforms were 
removed across all 4 drawers (Assayed 2012). Research 
to optimize the system continues. In Karak, the cost of 
one unit was estimated at USD 120 for site preparation, 
gravel, plastic sheets and PVC pipes. The additional 

installation of an electric pump, electric wiring and drip 
irrigation would result in a total cost of about USD 300. 
The average annual operation and maintenance costs 
were estimated to be USD 39. The cost-benefit analysis 
showed a favorable ratio of 2.6-2.7, which was calculated 
for different interest rates over 5 and 10 years (Bino et al. 
2008). A similar positive assessment was reported from 
trials in the Badia area, considering savings on freshwater 
and emptying of septic tanks (Al-Balawenah et al. 2011).

 � A further low-cost sophistication is the addition of 
plants for wastewater treatment, in gravel beds or 
more common pond systems, serving smaller house 
communities. Given the large amount of literature 

FIGURE 12. GRAVEL FILTER TRENCH. 

Source: IWMI.

FIGURE 13. CONFINED TRENCH TREATMENT UNIT.

Source: Bino et al. 2008.
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available on constructed wetlands, we like to refer to (a) 
Hoffmann et al. (2011) for the recent technology review 
of constructed wetlands; (b) Rose (1999) for wetland 
applications in urban farming; and (c) Ludwig (2009) for 
small-scale and household-based greywater treatment, 
including constructed wetlands. In West Africa, the use 
of pond systems with duckweed or water lettuce has 
been reported, for example, from Senegal, Burkina Faso, 
Ghana and Niger (Rose 1999; Awuah et al. 2004; Koné et 
al. 2002; Quayle 2012). In Kumasi, constructed wetlands 

as well as macrophyte-based treatment systems have 
been studied, for example, by Awuah et al. (2004) and 
Niyonzima (2007). Awuah et al. (2004) reported achieving 
a fecal coliform removal of 6, 4 and 3 log units for algae 
ponds, duckweed ponds and water lettuce, respectively. 
Algae ponds performed better as they offered more 
exposure to sunlight. Sedimentation accounted for over 
99% of fecal coliform removal. A horizontal subsurface 
flow constructed wetland with Typha latifolia and a 
retention time of 15 hours achieved a 72% to 79% removal 
of BOD, COD, suspended solids (SS), grease and fecal 
coliforms, while nitrogen and phosphate removal was in 
the range of 34% to 53% (Niyonzima 2007). 

FARM-BASED FECAL 
SLUDGE TREATMENT
The application of excreta-based fertilizers has attracted 
much attention as a concept of ecological sanitation and due 
to increasing fertilizer prices. Besides its nutrient content, 
fecal sludge (FS) is also rich in organic matter, which can 
contribute positively to soil structure and water-holding 
capacity. Hence, FS represents an important resource for 
enhancing soil productivity, in general. While in the case of 
ecosan (ecological sanitation) and dry toilets the excreta 
undergo in-situ treatment (Winblad and Simpson-Hébert 
2004), we will address the use of raw fecal sludge (septage) 
from septic tanks, which is delivered regionally by cesspit 
service providers to farmers (Cofie et al. 2005; Verhagen et 
al. 2012)4. 

In the case of Northern and Eastern Ghana, raw fecal sludge 
collected by vacuum trucks from on-site sanitation systems 
is in high demand by farmers growing maize and sorghum 
on poor savannah soils. Most farmers have been using fecal 
sludge for several years, with some using it for more than 
25 years with positive effects on soil chemical and physical 
properties. The period of FS delivery is within the dry season 

Source: IWMI, after photo by ICARDA/NCARE.

FIGURE 14. VERTICAL DRAWER COMPACTED SAND 
FILTER USED FOR GREYWATER TREATMENT AS TESTED 
BY ICARDA AND NCARE IN JORDAN. 

4 The treatment options described only apply to fecal sludge derived from septic tanks (septage) and not to biosolids or sewage sludge generated by wastewater treatment plants, as the latter 
have an increased risk of chemical contamination (compared to septage) (Koné et al. 2010) which is not addressed in the treatment options presented in this report.

Ponds to store water, wells supporting river bank filtration and filters attached to pumps are examples of on-farm 
practices, which could be starting points for participatory on-farm research on risk reduction. Another example is 
the use of clay pots, which have been tested in Northern Ghana, to increase both water-use efficiency and filter 
low-quality water (Abubakari et al. 2011). There are many more possibilities which could be food for thought for 
participatory technology development. In Togo, Ghana and Senegal, for example, farmers use different forms of 
sieves, such as mosquito nets, fitted on to the intake hole of the watering can to prevent the entry of particles such 
as algae, waste and organic debris. By doing so, some pathogens adsorbed to organic matter are removed. Studies 
on this kind of simple filter system showed a modest 1 log unit removal for bacteria and 12-62% for helminths, when 
a normal nylon cloth material was used (Keraita et al. 2008c). As farmers are already using these types of coarse 
filter systems to eliminate visible obstacles, an opportunity exists for adaptive field studies (see Keraita et al. 2008b) 
to determine the mesh size representing the best balance between easy water fetching/flow and maximal filtration. 
Source: Keraita et al. 2010. 

BOX 4. BUILDING ON FARMERS’ PRACTICES AND INNOVATIONS.
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(November to April). After delivery, farmers generally employ 
two methods of sludge treatment, namely the ‘random spot’ 
and the ‘pit’ methods (Cofie et al. 2005). In the ‘random 
spot’ method, sludge is discharged at various points on the 
farm (Figure 15) which are accessible to the cesspit emptier. 
After its drying, sludge ‘cakes’ are scraped off the ground 
into heaps, before the material is eventually spread over the 
field or incorporated into the soil. This allows the sludge to 
continue drying, before the cultivation of cereals starts. 

The ‘pit’ method is less common, as it requires digging pits 
on the farms and the placement of rice straw or bran at the 
bottom of the pit. Fecal sludge is then poured into the pit, 
which is large in size and can take one or more truckloads 
(Figure 16). Layers of bran and straw are placed in layers 
in between subsequent trips until the pit is full. Before the 
cropping season starts, the dried FS is removed from the 
pit and spread over the field. A more advanced system with 
farmer-managed drying ponds and subsequent sale of fecal 
sludge to other farmers has been observed in southern India 
(Figure 17).

The random spot and pit methods of sludge treatment take 
advantage of natural pathogen die-off under the hot savannah 
sun turning the fecal matter into an easier to handle manure, 
while simultaneously supporting pathogen destruction. In 
Ghana, relative humidity figures over the drying period are 
low while the solar radiation is high, resulting in the combined 
conditions conducive to the destruction of pathogens. By 
the time of the first seasonal rains (usually in April), most of 
the sludge is completely dry and evenly distributed on the 
field prior to land preparation and planting. This traditional 
method of soil fertility enhancement provides an effective 
option for mitigating occupational health risks, where drying 
periods are sufficiently long. However, in real life situations, 
drying periods can differ significantly. Drying periods that 
are too short will result in material which can still contain 
thermo-tolerant coliform bacteria and Ascaris concentrations 
above the WHO (2006b) monitoring guideline for fecal sludge 
application (Seidu 2010). Given the choice of crops (maize, 
sorghum), the health risks for consumers are, however, very 
unlikely, while the farmers are at risk of exposure as long as 
the sludge is fresh. 

To minimize the risk to farmers, Seidu (2010) recommends 
the following for the temperature conditions in Northern 
Ghana5:

 � For the surface spreading method (random spot method), 
sludge drying times of at least 30 days (ideally 60 days) 
is needed to meet the WHO microbial monitoring 
benchmark for E. coli and helminth eggs (based on less 
than one Ascaris egg per gram of total solids).

 � The same drying time resulted in rotavirus levels below 

FIGURE 15. SPOTS OF FECAL SLUDGE SPREAD OVER 
THE SOIL SURFACE.

Source: IWMI, after photo by Lars Schoebitz, Department of Water and 
Sanitation in Developing Countries (Sandec), Swiss Federal Institute of Aquatic 
Science and Technology (Eawag).

Source: IWMI, after photo by P. Amoah, IWMI.

FIGURE 16. PIT METHOD FOR ON-FARM PRE-TREATMENT 
OF SLUDGE.

Source: IWMI, after photo by P. Amoah, IWMI.

FIGURE 17. DEPOT FOR DRYING AND SALE OF FECAL 
SLUDGE NEAR BANGALORE, INDIA. 

5 Average monthly minimum (nighttime) temperature in the dry season is 20-24 oC; average monthly maximum (daytime) temperature in the dry season is 34-37 oC with 8-10 hours of sunlight.
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the WHO tolerable infection risk through accidental 
ingestion of small amounts of ‘cake’ sludge or sludge-
contaminated soil. 

 � For the pit method, 3 months of drying time will be needed 
to meet the WHO microbial monitoring benchmark for E. 
coli, Ascaris and rotavirus infections.

 � Further risk reduction could be achieved if the farmer 
used protective clothing. About one out of five farmers 
complained of itching feet after working with fecal sludge, 
which is normally done without wearing any protective foot 
covering (Cofie et al. 2005). 

Where cropping patterns, insects, odor, legislations or 
the climate do not allow open drying of sludge over 1 to 3 
months, the alternative options are as follows:

a. Disposal of fecal sludge into a system of parallel trenches 
as done in tree crop plantations in southern India (Figure 
18). The trench filled can then be covered with soil. In 
South Africa, trenches are also used for sludge disposal, 
where there are no designated treatment plants. Here, 
lime is applied on top of the soil to control smells and flies. 
If lime gets mixed with excreta at a ratio of 1 to 10 and 
aeration is secured, a very positive impact on helminth 
eggs can also be expected while maintaining sufficiently 
high nitrogen levels (Vu-Van et al. 2013).

b. Where groundwater levels are high, or a dry product 
is preferred, fecal sludge can be composted or co-
composted as described above (Figure 19).

FIGURE 18. TRENCH USED FOR FECAL SLUDGE 
FERTILIZATION ALONG A BANANA PLANTATION NEAR 
BANGALORE, INDIA. 

Source: IWMI.

Source: IWMI.
    
Pre-treatment: The first stage of a sludge treatment process is dewatering of the sludge in so-called sludge drying 
beds. Drying beds consist of a gravel-sand filter, equipped with a drainage system. The sludge is loaded on to the 
bed and the water is evacuated mainly by percolation through the filter and by evaporation (Cofie and Koné 2009). 
Depending on the climate and rainfall, this process will take between 10 and 20 days. The dewatered sludge is 
suitable for further treatment, which is necessary for pathogen removal or inactivation.

Post-treatment: Further treatment of the sludge may happen through co-composting with organic waste, e.g., 
kitchen waste or garden waste (Cofie et al. 2006, 2009). The pre-treated sludge is composted together with the 
organic material at a ratio of 1:2 or 1:3 over 12-13 weeks. If the composting is performed well, temperatures in the 
heaps of sludge reach 55-60 °C. The compost that is produced constituted a safe and valuable soil conditioner. 
However, to increase the competitive advantage and acceptance of the compost, it can be enriched, for example, 
with urine, rock-phosphate or fertilizer (Adamtey et al. 2009), and pelletized (Nikiema et al. 2012).

FIGURE 19. REUSE-ORIENTED SEPTAGE MANAGEMENT AS A SAFE ALTERNATIVE TO FARM-BASED TREATMENT.

LATRINE OR SEPTIC TANK
SLUDGE 

DRYING BED CO-COMPOSTING
BLENDING AND 
PELLETIZATION

DESLUDGING PRE-TREATMENT POST-TREATMENT VALORIZATION REUSE
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CONCLUSIONS
 
This paper presents an overview of selected, low-cost, 
on-farm wastewater, greywater and fecal sludge treatment 
technologies that can contribute to the reduction of health 
risks in instances where conventional treatment is insufficient 
or nonexistent. There is strong evidence showing that these 
technologies can improve crop safety, especially if multiple 
risk reduction approaches are combined. Used in isolation, 
however, many of the technologies presented here would 
be insufficient to fully protect farmers or consumers except 
in situations where water pollution levels are moderate or 
low, as is the case with greywater. In all other cases, the 
interventions should play a complementary role to any 
available level of wastewater treatment and/or other post-
harvest measures (such as careful vegetable washing) to 
comprehensively reduce health risks (Bos et al. 2010). 

Despite it being a common reality in many low-income 
countries, the development of on-farm water or sludge 
treatment technologies has not yet received the 
attention that is needed in research, perhaps due to the 
traditional focus on conventional wastewater treatment. 
In essence, the farm-based technologies presented in 
this paper use the principles of conventional wastewater 
treatment. It is, however, important to understand both 
the nature of contamination as well as the biophysical and 
socioeconomic conditions in various locations to adapt 
the technologies accordingly. In this sense, the technology 
options presented here should not be considered as a 
blueprint for on-farm treatment, but as suggestions for 
local adaptation and verification. 

Interventions which can build on farmers’ current practices 
and irrigation systems will have the highest potential of 
adoption (Keraita et al. 2007, 2008b). Our field experience 
in West Africa showed that, if farmers understand the 

technologies and their advantages, they will continue to 
modify the techniques on their own even after scientists 
have left the project. 

A key challenge for the adoption of farm-based measures is 
that they require behavior change, often without obvious or 
direct benefits unless farmers’ risk awareness is high. This 
requires incentive systems which can range from increased 
tenure security to branding and market demand for safer 
crops, or involve social marketing (Karg and Drechsel 
2011). All innovations require that farmers (and ideally 
consumers) are equipped with the knowledge on the health 
risks involved in using contaminated water, and can rely 
on institutional support, for example, from the extension 
service for technical advice, but also monitoring of farmers’ 
compliance with the recommended safety practices. 

To achieve high adoption rates, researchers have to actively 
involve farmers in the development or adaptation of the 
technology to understand farmers’ needs, ability, interest to 
invest and change behavior, and their awareness of the risks 
involved (Keraita et al. 2008b). To ensure lasting adoption, 
the benefits should exceed the costs. This could ideally 
be the provision of market incentives for growing safer 
crops. However, other incentives, such as increased tenure 
security, could also facilitate technology change. Most farm 
plots in urban areas have low tenure security and farmers 
can be easily expelled from their plots. In such situations, 
it is unlikely that farmers will invest in on-farm infrastructure 
(Obuobie et al. 2006). Increasing tenure security is thus an 
attractive incentive which could be offered by authorities 
for the adoption of safety measures. A lasting technology 
change should, however, be supported by regulations 
to institutionalize the change and related compliance 
monitoring by extension staff (Drechsel and Karg 2013).  
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