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Summary 

Irrigation expansion is a critical development intervention 
to address food security challenges in Ethiopia. However, 
only a fraction of the country’s irrigation potential has 
been utilized thus far. Enhanced spatial information on 
irrigated land can support policy and practice by making 
agricultural land and water management solutions more 
effective. Currently, considerable variations exist in 
the irrigated area estimations undertaken by different 
government agencies. Furthermore, the irrigated area 
maps developed as part of global mapping efforts are too 
coarse for planning and management at the subnational 
scale. This study aims to develop an irrigated area map 
of Ethiopia using satellite images to support agricultural 
water management practices in the country, using multi-
temporal, multi-resolution data sets from 2015 to 2016. 

The identification of irrigated areas was achieved by 
analyzing seasonal changes in the biomass and dry season 
moisture status of agricultural areas. As an initial step, 
a country-wide agricultural area map was developed 
using Landsat 8 images to remove non-agricultural land 
cover types. Subsequently, the seasonal changes in the 
agricultural areas were analyzed with an annual time series 
of Moderate Resolution Imaging Spectroradiometer (MODIS) 
16-day maximum Normalized Difference Vegetation Index 
(NDVI) composite data, along with Climate Hazards group 
InfraRed Precipitation with Stations (CHIRPS) rainfall time 
series for the same period. Landsat 8 data were used to 
analyze the dry season moisture status. 

The classification was carried out by combining the 
temporal correlation of crop growth patterns with 
rainfall, the number of crop cycles in a year and dry 
season moisture status. The seasonal variables were 
derived by Fourier analysis and a time-lagged regression. 
The dry season moisture index was captured through 
the Normalized Difference Moisture Index (NDMI) data 
developed using Landsat 8 data. 

The study resulted in a map of irrigated and rainfed 
areas with a spatial resolution of 30 m. The total area of 
croplands was estimated as 21.8 million hectares (Mha), 
of which only 1.11 Mha were mapped as the irrigated area. 
This is only around 5% of the estimated total agricultural 
area. Validation using the geographic coordinates of 
irrigated areas obtained from the records of the Ministry of 
Agriculture (MoA) in Ethiopia showed an agreement of 70% 
with the results of this study. The results broadly match the 
recent estimations by MoA based on field information. A 
comparison of the results with the area estimations by the 
government agencies is also provided. 

This study provides the spatial extent and distribution of 
existing irrigated areas, which can strengthen future efforts 
to monitor irrigation development in Ethiopia. Further 
work on irrigation suitability analysis combined with the 
results of this study can also provide valuable information 
for decision-makers and investors about future irrigation 
development in the country.
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Mapping Irrigated and Rainfed Agriculture in Ethiopia 
(2015-2016) using Remote Sensing Methods

Introduction

Ethiopia is the second-most populous country in Africa 
after Nigeria and is one of the fastest-growing economies 
in the region. However, it remains one of the poorest 
countries in the world. Agriculture is the mainstay of 
the economy, accounting for ~85% of the labor force 
(Welteji 2018). Irrigation expansion is considered critical 
to increasing agricultural productivity and is consequently 
of high priority to sustainably intensify agriculture and 
improve food security (Schmitter et al. 2018). However, 
only a small portion of the country’s irrigation potential is 
utilized so far (Worqlul et al. 2017).

Information about the location and spatial extent of 
the irrigated as well as rainfed areas is an important 
requirement for sustainable water resources development 
and agricultural planning. However, reliable estimates of 
the geographical extent and maps of irrigated areas are not 
available for most of Ethiopia. Information about the areal 
extent of irrigation is collected by various government 
agencies in Ethiopia. However, major differences exist 
in the statistics reported (MoWIE 2018; Haile and Kassa 
2015). Countrywide maps of irrigated areas are primarily 
available through various global mapping efforts such 
as the Global Map of Irrigated Areas (GMIA) (Siebert et 
al. 2013a, 2013b) published by the Food and Agriculture 
Organization of the United Nations (FAO), and the Irrigated 
and Rainfed Area Map of Africa (Chandrasekharan et al. 
2015). The FAO GMIA primarily uses the area statistics 
reported by the government and other national or 
international agencies; it expresses the irrigated area as a 
percentage of a grid cell of approximately 10 km x 10 km 
resolution. For Ethiopia, FAO mainly uses the statistics 
reported for the year 2001 with some areas updated 
with statistics from 2004 (FAO 2016). The Irrigated and 
Rainfed Area Map of Africa (Chandrasekharan et al. 2015) 
is based on satellite images with 250 m resolution acquired 
during the period 2010-2011. The area estimation based 
on this map has disparities, generally overestimation, as 
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compared with the statistics reported by the government 
as well as popular perception.

Most global maps apply generalized classification rules 
developed for large regions, which would increase the 
uncertainties at a local scale. The coarse pixel resolutions also 
contribute to the uncertainty due to the mixed land cover at 
sub-pixel resolutions present in most Ethiopian agricultural 
landscapes. An important prerequisite for the irrigated/
rainfed categorization of agricultural areas is information 
about the spatial extent of croplands corresponding to 
the study period at an appropriate resolution. Most crop 
area maps of Ethiopia available in the public domain are 
from various global land cover mapping products such as 
GlobCover, Moderate Resolution Imaging Spectroradiometer 
(MODIS) land cover, etc. While most of these coarse-
resolution products are successful in capturing large 
continuous agricultural areas, they generally fail to map 
fragmented agricultural areas and misclassify significant areas 
of non-crop land cover as crop cover. Because of the coarse 
resolution of these maps, the smaller non-agricultural areas 
within the croplands, such as natural vegetation patches, 
hamlets, smaller grasslands, etc., are usually misclassified 
as agricultural land. The inclusion of wetlands or evergreen 
vegetation in agricultural areas eventually leads to the 
misclassification of such areas into irrigated areas. Therefore, 
it was essential for this study to develop a more accurate 
crop area map of the study area to avoid potential large-scale 
overestimation of irrigated areas. 

This study aimed to develop a map of irrigated and 
rainfed areas of Ethiopia using remote sensing data. 
As an important prerequisite for the irrigated/rainfed 
categorization, an agricultural area map had to be 
prepared. The study aimed to develop an agricultural 
area map and irrigated area identification using satellite 
images from 2015 to 2016, and provide area estimations at 
subnational levels.
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Materials and Methods 

The analysis was performed in two stages. Irrigated and 
rainfed areas were mapped by analyzing seasonal trends 
in vegetation biomass and dry season moisture status in 
agricultural areas. Many non-agricultural land cover types 
such as forests and wetlands have spectral and seasonal 
characteristics similar to agricultural lands. As an initial 
step, an agricultural area map was developed excluding 
such areas. The agricultural areas identified by this map 
were further classified as irrigated and rainfed in the 
subsequent analysis. 

Remotely sensed images over multiple dates were used 
for the preparation of the agricultural area map. The 
mapping of irrigated and rainfed areas in the areas 
identified as croplands was undertaken by utilizing time 
series data sets of vegetation indices and satellite-derived 
rainfall data sets. Apart from the original spectral bands, 
various spectral indices derived from the imagery were 
also used for the analysis at various stages. Furthermore, 
the analysis was supported by ground truth information 
obtained through field surveys, secondary sources and 
visual interpretation of high-resolution images. 

Spectral Indices for Classification

The use of spectral indices derived through different 
satellite image band combinations is a common practice 
in remote sensing analysis. Spectral indices used for 
mapping of agricultural and irrigated areas in this study 
are described below.

Normalized Difference Vegetation Index (NDVI): NDVI 
is probably the most frequently used vegetation index 
derived from remote sensing data. It is strongly correlated 
with many vegetation parameters such as crown closure, 
leaf vigor, canopy biomass and leaf area index (Lyon et al. 
1998). NDVI is derived from the red (R) and near infrared 
(NIR) bands of the satellite images using the following 
formula:

         ...............................    (1) 

where: ρR is the red band reflectance and ρNIR is the near 
infrared band reflectance.

NDVI has been successfully used for mapping and 
monitoring vegetation, including land use and irrigated 
area mapping at multiple scales, often along with original 
spectral bands and other spectral indices (Dahal et al. 
2018; Pervez et al. 2014; You et al. 2013; Thenkabail and 
Wu 2012; Thenkabail et al. 2009). NDVI is less affected 
by various forms of illumination, and atmospheric and 
topographic effects due to its ratio properties (Matsushita 
et al. 2007; Huete et al. 2002). However, NDVI values 
tend to saturate in areas with high biomass; as a result, 
differentiation of dense vegetation types based on NDVI 

will be constrained by index saturation at higher values 
(Huete et al. 2002; Pun et al. 2017; Naser et al. 2020). 
Enhanced Vegetation Index (EVI), which is free from the 
saturation effect, is often proposed as an alternative 
to NDVI. However, EVI is highly susceptible to the 
topographic effects (Matsushita et al. 2007) and may 
not be suitable for many areas of Ethiopia due to the 
mountainous terrain. 

The impact of NDVI saturation is most visible during 
the period with peak biomass, whereas NDVI during 
the growing season is not affected by the saturation 
(Matsushita et al. 2007; Huete et al. 2002). It has also 
been observed that NDVI has a higher range in values 
over the semiarid areas, but this is at the expense of a 
lower dynamic range over the more humid forested sites 
(Huete et al. 2002). An evaluation of seasonal trends in 
NDVI in several crop types showed that NDVI is suitable 
for distinguishing the vegetation categories during the 
growing period, which indicates that the multi-temporal 
NDVI data are suitable for differentiating vegetation 
categories (Wardlow et al. 2007). 

If the vegetation classification is solely based on NDVI, 
the saturation effect would lead to limited success in 
distinguishing areas with dense forests from certain 
irrigated areas or identifying various irrigated crop types 
during the peak of the growth. However, it has been 
observed that the use of functionally different indices 
increases classification proficiency (Pun et al. 2017). 
In this analysis, multi-temporal NDVI has been used 
along with other spectral bands, spectral indices and 
topographic variables to map the crop areas. A time series 
of NDVI along the entire crop cycle was used for further 
classification of irrigated and rainfed areas. 

Normalized Difference Moisture Index (NDMI): NDMI value 
is an indicator of the moisture levels stored in vegetation. 
The index is derived based on the absorption of water by 
the short-wave infrared (SWIR)-1 band compared to the 
NIR band (Wilson and Sader 2002; USGS 2016). NDMI was 
derived from the NIR and SWIR bands of Landsat 8 using 
the following formula: 

                                                           ............................. (2)  

where: ρNIR is the near infrared band reflectance and ρSWIR 1 
is the short-wave infrared -1 band reflectance.

Although the biophysical interpretation of indices that use 
the SWIR band is more ambiguous than indices that use only 
red and NIR bands (Wilson and Sader 2002), they seem to 
account for moisture content in vegetation and soil.

NDMI was used at both stages of the analysis. Multi-
temporal NDMI was used as one of the input layers for the 

(ρNIR - ρR)

(ρNIR + ρR)
NDVI = 

(ρNIR - ρSWIR 1)

(ρNIR + ρSWIR 1)
NDMI = 



IWMI - 3Working Paper 196 - Mapping Irrigated and Rainfed Agriculture in Ethiopia (2015-2016) using Remote Sensing Methods

crop area classification. The index was further used for the 
identification of irrigated areas in the subsequent stage of 
the analysis.

Data Sources 

The analysis was performed using publicly available, free 
satellite data sets along with geographical coordinates of 
irrigated areas obtained through primary field surveys and 
secondary data sets. Satellite images acquired at regular 
intervals over one year were used to analyze the seasonal 
trends. An annual time series of MODIS 16-day NDVI 
maximum value composite data were used to capture the 
seasonal variation of vegetation. Landsat 8 images were 
used for mapping the agricultural areas and assessing the 
dry season moisture status in croplands. The analysis was 
supported by global open access rainfall data sets and 
crop area maps. The characteristics of these data sets and 
use of the data are described below.

Landsat 8

Landsat 8 images were used to prepare the crop area 
map and further analyze the irrigation status of the 
crop areas. Landsat 8 images have 11 spectral bands 
including one panchromatic and two thermal bands. 
The panchromatic band has a spatial resolution of 15 m. 
The thermal bands are acquired with a 100 m resolution 

but are resampled to 30 m in the delivered data product. 
The other bands have a resolution of 30 m. Additionally, 
a Quality Assessment (QA) band, which provides 
information about the cloud cover and cloud shadows, is 
also available for Landsat 8 data. The panchromatic band 
was not used for the analysis. Thus, the analysis involving 
Landsat 8 images was carried out at 30 m resolution.

Two different Landsat 8 data products were used for this 
study. The crop area classification was performed using the 
Landsat 8 Collection 1 Tier 1 8-Day Top of Atmosphere (TOA) 
Reflectance Composite imagery available in Google Earth 
Engine.1 These mosaics are created from all the scenes in 
each eight-day period beginning from the first day of the 
year (Google Earth Engine 2017). Spectral indices for the 
analysis of irrigation status of the agricultural areas were 
derived using the Landsat 8 Operational Land Imager/
Thermal Infrared Sensor (OLI/TIRS) Surface Reflectance 
product available from the United States Geological 
Survey (USGS) Earth Explorer2 satellite data archive (USGS 
2016). The geographical area of Ethiopia is covered by 59 
Landsat 8 scenes (Figures 1 and 2). The satellite images 
acquired between January 2015 and September 2016 were 
used at various stages of the analysis. Images of the same 
period were not available for the entire country because 
of cloud cover. Scenes with more than 20% cloud cover 
were not used for the analysis. Multi-season images for 
each scene were used for the classification to reduce the 
impact of clouds.

Figure 1. Landsat 8 scene footprints of Ethiopia, according to the Landsat Worldwide Reference System 2 (WRS 2).

1 https://earthengine.google.com/ 
2 https://earthexplorer.usgs.gov/
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MODIS NDVI 

The identification of irrigated and rainfed areas within 
the agricultural landscape was carried out through a 
time series analysis of intra-annual vegetation indices. 
The MODIS NDVI data product MOD13Q1 was used to 
represent the seasonal changes in vegetation. The 
MOD13Q1 NDVI data set is a 16-day maximum value 
composite derived from daily satellite data (Didan 2015) 
with a spatial resolution of 250 m. The time series image 
data set for this study was developed from the MOD13Q1 

data products from April 2015 to March 2016. Four 
MODIS scenes were required to cover Ethiopia, and for 
each scene, 23 images were required to create the time 
series data set for the study period. The MODIS data set 
distributed by USGS through the National Aeronautics 
and Space Administration (NASA) Earthdata Search3 
system was used. The data set is available with sinusoidal 
projection in Hierarchical Data Format (HDF). The images 
downloaded were converted to ERDAS Imagine format 
and re-projected to the geographic (latitude/longitude) 
coordinate system. 

3 https://search.earthdata.nasa.gov/ 
4 https://data.chc.ucsb.edu/products/CHIRPS-2.0/ 

5 https://search.earthdata.nasa.gov/ 

Figure 2. Mosaic of Landsat 8 scenes of Ethiopia.
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An annual time series of rainfall data was also used 
along with the vegetation/NDVI images to analyze the 
seasonal changes. Daily global rainfall images of the 
Climate Hazards group InfraRed Precipitation with Stations 
(CHIRPS) were downloaded from the website of the  
Climate Hazards Centre4 (Funk et al. 2015). The spatial 
resolution of the data is 0.05o or 5 km (approximately). A 

16-day rainfall time series corresponding to each 16-day NDVI 
composite was created from the daily rainfall data to match 
the temporal resolution of the MODIS NDVI data series.

Ground Truth Data

Geographic coordinates of sample locations for this study 
were obtained through field surveys, high-resolution 
images in the Google Earth platform,5 and from past 
studies and government records. 
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Field data collection: Geographical coordinates of irrigated 
and rainfed areas were collected from different parts of 
the country using a hand-held global positioning system 
(GPS). The survey was conducted in 2017. Coordinates 
were collected from within plots with relatively uniform 
land use. Additionally, the survey team interacted with 
field-level officials from the Ministry of Agriculture (MoA) at 
different locations to gather descriptive information about 
irrigation patterns and extents. GPS coordinates collected 
for earlier projects of the International Water Management 
Institute (IWMI) in 2010 and 2015 were also used. The data 
collected during 2015 and 2017 were used for the irrigated 
and rainfed area classification of agricultural areas. The 
2010 data were used for validation as the irrigation status 
of those locations has not changed over the years.

Google Earth images: Sample locations for the crop area 
classification were obtained through visual interpretation 
of the high-resolution (up to 0.65 m) images available 
in the Google Earth platform. Google Earth images were 
also used for visual cross-verification and correction 
of the classification results. Although the images are 
of high resolution, it is often not possible to determine 
the irrigation status of crops using Google Earth alone. 
Therefore, this resource was not used for the irrigated-
rainfed classification of agricultural areas. 

Coordinates from secondary sources: Coordinates of 
irrigated areas from several locations in the Oromia 
and Tigray regions were available from the records of 
MoA. Additionally, irrigated site polygons digitized over 
Google Earth imagery were available for two districts 
of the Southern Nations, Nationalities, and People’s 
Region (SNNPR). These data sets were used for both the 
classification and validation of the results.

Detailed metadata of these data sets were not available. 
The Oromia ground truth data set was generated through 
partial site visits and secondary data available at the 
district level from past surveys or studies (OIDA 2018). 
Data collection methods used for other data sets are not 
available at the time of writing this report.

The classification of remote sensing images and validation 
of results require GPS coordinates collected from within 
the plots to enable pixel-to-pixel comparison. Ideally, the 
coordinates should be obtained from areas with relatively 

uniform land cover. Location coordinates collected for 
other purposes often do not meet this quality criterion. 
The available coordinates from the secondary sources were 
plotted on Google Earth images and were visually verified 
for their suitability for the use in the classification and 
validation. Some of the points seem to have been taken 
at adjacent locations of agricultural lands, presumably 
from an easily accessible location or at the diversion/
abstraction location of the irrigation scheme. Wherever 
the irrigated areas represented by those points could be 
clearly identified visually, these points were manually 
moved to the irrigated area. Since the modified locations 
are visually interpreted data, these were used only for 
the purpose of classification and were not included in the 
validation data set.

Crop Area Mapping

The crop area map of Ethiopia was prepared as an initial 
step to exclude the non-agricultural areas from the 
analysis. The mapping was carried out using the satellite 
data archives and classification procedures available in 
Google Earth Engine. Google Earth Engine is an advanced, 
cloud-based geospatial processing platform facilitating 
access to a wide range of raw and derived satellite data 
products and classification algorithms. The classification 
was performed using the Landsat 8 Collection 1 Tier 
1 8-day TOA Reflectance Composite imagery as input 
(as mentioned in the section Data Sources). An initial 
classification with single date imagery for a sample area 
did not produce the desired result. The separation of 
cultivated savannah and bushlands from natural savannah 
and bushlands was particularly challenging. However, the 
seasonal changes occurring in cultivated areas and natural 
vegetation are likely to be different in most situations. 
These changes can be captured through images acquired 
on multiple dates for each scene and can be used as 
input to improve the classification (Krishnaswamy et al. 
2004; Senf et al. 2015). In addition to the original bands 
from the multi-seasonal images, spectral indices such as 
NDVI, NDMI and topographic data sets were also used 
for the classification (Morton and Rowland 2015). The list 
of Landsat scenes and the dates of the images used for 
the classification of crop areas are shown in Table 1. An 
overview of the classification process is presented in  
Figure 3.
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Table 1. List of Landsat 8 scenes and dates of the images used for the crop area classification according to the Landsat 
WRS 2.

   Row
   50 51 52 53 54 55 56 57 58
  162                     Jan 14,  
                     2016     
  163                 Jan 21, 2016    
  164                       Jan 12, 2016  
  165                Jan 19, 2016 / Sep 15, 2016  
  166                      Feb 11, 2016  
  167             Jan 14, 2015 / Feb 18, 2016 / March 5, 2016 / Mar 21, 2016
  168      Jan 8, 2016/Jan 24, 2016/     Jan 5, 2015 / Feb 6, 2015 / Feb 6, 2015 /  
                         Mar 12, 2016/  Jan 24, 2016 / Mar 28, 2016   Jan 24, 2016     
          Mar 28, 2016  
  169         Jan 28, 2015 / Jan 15, 2016 /         Jan 28, 2015 
            Feb 16, 2016 / Mar 3, 2016           
  170      Jan 22, 2016 / Feb 7, 2016 / Feb 23, 2016 /                Jan 22, 2016 /
      Mar 10, 2016                                 Feb 7, 2016 / 
                           Feb 23, 2016 /  
                                                      Mar 10, 2016  

  171           Jan 13, 2016 / Feb 14, 2016      
  172         Jan 20, 2016      
             
       Beyond the Ethiopian country boundary  

Pa
th

The following data set was constructed for each Landsat 8 
scene as the classification input. 

• Bands 1 to 7 of multi-date images from Landsat  
 8 sensor: The images were selected from the 
 period January 2015 to September 2016. The 
 number and dates of images used for each   
 scene are different due to the availability of 
 cloud-free images. The images that were least  
 affected by the clouds were selected as inputs  
 for each scene. The clouds and cloud shadows  
 of the selected images were removed using  
 masks generated from the Landsat 8 QA band.  
 Since the analysis used images from multiple  
 seasons, cloud-free pixels from at least one of 
 the selected dates were available for the cloud- 
 masked areas. 

• NDVI: Derived for each of the Landsat 8 images  
 selected for the analysis.

• Mean NDVI: Mean value of the NDVI data from  
 multiple dates selected for the analysis.

• Standard Deviation of NDVI: Derived from the  
 NDVI of multiple dates selected for the analysis.

• NDMI: Derived for each of the Landsat 8 images  
 selected for the analysis.

• Mean NDMI: Mean value of NDMI data from   
 multiple dates selected for the analysis.

• Altitude: From Shuttle Radar Topography   
 Mission (SRTM) Digital Elevation Model (DEM)  
 with 30 m resolution (NASA JPL 2013)

• Slope: Derived from the SRTM DEM.



IWMI - 7Working Paper 196 - Mapping Irrigated and Rainfed Agriculture in Ethiopia (2015-2016) using Remote Sensing Methods

Fi
gu

re
 3

. O
ve

rv
ie

w
 o

f t
he

 c
ro

p 
ar

ea
 m

ap
pi

ng
 p

ro
ce

ss
 u

si
ng

 L
an

ds
at

 8
 im

ag
es

. 

N
ot

es
: T

O
A 

- T
op

 o
f A

tm
os

ph
er

e;
 N

DV
I -

 N
or

m
al

iz
ed

 D
iff

er
en

ce
 V

eg
et

at
io

n 
In

de
x;

 N
DM

I -
 N

or
m

al
iz

ed
 D

iff
er

en
ce

 M
oi

st
ur

e 
In

de
x;

 C
AR

T 
- C

la
ss

ifi
ca

tio
n 

an
d 

Re
gr

es
si

on
 T

re
e.

M
ul

ti
-d

at
e 

La
nd

sa
t 

8 
– 

TO
A 

Re
fle

ct
an

ce
 

ba
nd

s 
1 t

o 
7

N
D

VI
 o

f e
ac

h 
da

te
 

Tr
ai

ni
ng

 s
it

es
 

Cr
op

 a
re

a 
m

ap

M
ea

n 
N

D
VI

 

N
D

M
I o

f e
ac

h 
da

te

St
an

da
rd

 D
ev

ia
ti

on
 

of
 N

D
VI

 
Ra

nd
om

 fo
re

st
/C

AR
T 

cl
as

si
fic

at
io

n

Vi
su

al
 in

sp
ec

ti
on

 a
nd

 
m

an
ua

l e
di

ti
ng

 

Vi
su

al
 in

te
rp

re
ta

ti
on

 o
f 

G
oo

gl
e 

Ea
rt

h 
hi

gh
-

re
so

lu
ti

on
 im

ag
es

M
ea

n 
N

D
M

I

Al
ti

tu
de

 

Sl
op

e 

In
pu

t l
ay

er
s 

fo
r 

cl
as

si
fic

at
io

n



IWMI - 8 Working Paper 196 - Mapping Irrigated and Rainfed Agriculture in Ethiopia (2015-2016) using Remote Sensing Methods

Even though the objective was to develop a crop 
area map, all major land cover categories had to 
be included in the classification process to avoid 
possible misclassification of various land cover types 
as an agricultural category due to spectral reflectance 
similarities to croplands. The signatures for classification 
were developed for several subcategories of croplands, 
such as standing crops, harvested/fallow lands, 
agricultural plantations, woodlands with cultivation and 
bushlands with cultivation, and nonagricultural land uses, 
such as forest, woodland, dense bushland, bushland, 
grassland, bare land, marshland, water and urban areas. 
The signatures were developed from training samples 
selected from the high-resolution images available 
through the Google Earth Engine interface. The training 
samples, selected from the areas where the respective 
land use is prominent, were spatially well distributed 
over the map region. The primary purpose of developing 
signatures for non-agricultural classes is to provide a 
suitable category to accommodate the pixels belonging 
to those classes to avoid them being misclassified as 
agriculture. Hence, the fine distinction between those 
categories was not addressed for the development of 
signatures and the remaining classification process. 

We used both Random Forest Classification and 
Classification and Regression Tree (CART) algorithms 
for the classification of the input data set. Parametric 
classification approaches such as Maximum Likelihood 
Classification are often less efficient in heterogeneous 
landscapes, where it is difficult to obtain a sufficient 
number of normally distributed sample locations. Non-
parametric approaches, such as CART (Breiman et al. 
1984), and ensemble learning algorithms, such as Random 
Forests (Breiman 2001), have been producing better 
results for such landscapes. The Random Forests method 
is considered to be one of the most effective algorithms 
for satellite image classification (Iverson et al. 2008).

The classification outputs were visually compared with 
the high-resolution images and the more accurate results 
were selected for further processing. The results were 
downloaded from the Google Earth Engine as tiles with 
30 m spatial resolution. The output layers were compared 
with high-resolution images available in Google Earth and 
manually edited to improve the accuracy of agriculture 
categories. The tiles were mosaiced and a 3 x 3 majority 
filter was used to remove the image speckle in the output 
map known as salt and pepper noise effect resulting from 
high local heterogeneity in pixel values (Ouma and Tateishi 
2008). Finally, the non-agricultural classes were removed 
to create the crop area map.

Classifying Irrigated and Rainfed Areas

The agricultural areas were further classified into 
irrigated and rainfed areas. Conventional methods of 
satellite image classification heavily rely on the spectral 
reflectance properties or signatures of distinct land use 

and land cover types. The spectral signatures derived 
from multispectral satellite data for the irrigated and 
rainfed areas did not show significant differences to 
enable segregation of these two categories. However, 
the rainfed and irrigated areas did exhibit significant 
dissimilarities in the intra-annual changes in green 
biomass. The growth and decline of green vegetation in 
rainfed areas are closely linked with the rainfall season, 
while the changes in irrigated areas show less temporal 
correlation with the rainfall season. It was also noticed 
that the moisture levels captured through spectral 
indices during the dry season are higher in irrigated 
areas compared to rainfed areas. The irrigated area 
identification was achieved by analyzing the seasonality 
properties and dry season moisture status. 

Analysis of Seasonality

Time series analysis of annual NDVI and rainfall data was 
used to explore the seasonal changes and the temporal 
correlation of the growth/decline cycle of green biomass 
in agricultural areas to differentiate/identify irrigated 
and rainfed areas. The period for the time series data 
definition and analysis was determined according to the 
annual crop calendar of Ethiopia. While there are regional 
differences in the rainfall pattern, the major rainfall 
season for most regions of Ethiopia begins from May/June 
and continues until August/September. Accordingly, the 
major cropping season also begins during this period for 
most of the country. Some areas receive a second rainfall 
during March/April, and many such areas have a second 
cropping season too. Thus, the crop calendar year for 
this analysis was defined as April 2015 to March 2016 to 
ensure that it covers the major crop cycles in most parts 
of Ethiopia.

The 16-day MODIS NDVI and CHIRPS rainfall data sets, 
as described earlier, were used to create the time series 
data sets for this period. We assumed the relationship 
between rainfall patterns and seasonal changes in 
vegetation to be different for irrigated and rainfed 
agriculture. The NDVI and rainfall trends of several 
locations were explored to understand the differences in 
the patterns of biomass change between irrigated and 
rainfed areas. These locations were selected based on 
available ground truth information from various sources 
described earlier.

As evident from the NDVI-rainfall profile plots (Figures 
4 and 5), both rainfed and irrigated areas exhibit 
significantly different temporal relationships with the 
rainfall patterns. Irrigated area profiles were developed 
from sample locations identified using a subset of 
available geographic coordinates. Locations for the 
rainfed crop trends were identified through visual 
interpretation of Google Earth images. These locations 
were mostly dry season fallows, which are most likely 
rainfed areas in the Ethiopian context. The growth and 
decline of green vegetation in rainfed areas closely follow 
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the rainfall pattern of those areas. Since the irrigated areas 
do not directly depend on the rainfall patterns of the area, 

these areas show less correspondence with the rainfall 
patterns. 

Figure 4. Examples of NDVI and rainfall trends in irrigated areas identified through field surveys.
Note: NDVI = Normalized Difference Vegetation Index.
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The NDVI—rainfall trends and the information about 
the crop calendar and irrigation patterns gathered from 
various sources show that the following characteristics 
would be useful to distinguish between irrigated and 
rainfed areas: 

• Most irrigated areas have multiple crop cycles 
in a year, whereas most rainfed areas have 
only one crop cycle per year. However, since 
some areas have a second crop cycle utilizing 
the remaining moisture of the first crop 
season or having a second rainfall season, 
the number of crop cycles alone cannot be 
used as an identifier of irrigated areas.

• A second or third crop during the 
January—March period indicates a 
higher probability of irrigated areas.

• Vegetation growth periods in rainfed areas 
have high temporal correspondence with 
the rainfall season. This correspondence 
is much weaker in irrigated areas.

Both the NDVI and rainfall data sets for the period were 
analyzed using the time series analysis techniques. Fourier 
analysis was used to analyze the crop cycle frequency 
while time-lagged regression techniques were used to 
analyze the NDVI-rainfall relationships. Figure 6 provides 
an overview of the data inputs and classification methods 
used for identifying irrigated and rainfed areas. 

Fourier Analysis

The seasonal vegetation change in agricultural areas 
follows a cyclic nature over time. The green biomass 
in crop areas gradually increases during the growing 
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Figure 5. Examples of NDVI and rainfall in potentially rainfed areas identified through visual interpretation.

season and declines during the dry or harvest seasons. 
The process of vegetation growth and withering repeats 
through the crop cycles during the year. As a result, the 
NDVI growth trajectory attains the form of a harmonic 
wave over time in areas where multiple cropping cycles 
are practiced. The harmonic wave characteristics of the 
biomass change can be analyzed using the NDVI time 
series for the corresponding time period. We used the 
Fourier analysis technique to analyze the harmonic wave 
pattern of the NDVI curve.

Fourier analysis permits a complex curve to be expressed 
as the sum of a series of cosine waves (terms) and an 
additive term (Jakubauskas et al. 2001). The additive 
term represents the mean NDVI and each successive 
harmonic term explains a percentage of the total variance 
in the time series. High amplitude values for a given 
term indicate a high level of variation in temporal NDVI; 
the term in which that variation occurs indicates the 
periodicity of the event (Jakubauskas et al. 2001). The first 

harmonic term represents the annual cycle, the second 
harmonic term represents the biannual cycle, and so on. 
The prominence of one particular harmonic over others 
explains the cyclic nature of the curve. For example, if 
the amplitude of the second harmonic is higher than 
other harmonics, it indicates a strong biannual vegetation 
cycle in the time series. However, often, identification 
of the prominent harmonic is not straightforward. It is 
also dependent upon the amount of variance in original 
data that is contained in a specific harmonic term. 
Percent variance explained by each harmonic term can 
be computed by dividing the individual variance for each 
term by total variance (Jakubauskas et al. 2001).

A pixel-wise Fourier transformation of the time series 
for each MODIS scene was performed to produce the 
amplitude and phase images (Figures 7 and 8). Further, 
the number of crop cycles in each pixel was determined by 
identifying the dominant harmonic. The agricultural areas 
were classified into single-, double- or triple-crop areas.
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Figure 7. First three Fourier components of the annual time series NDVI.

Percent variance explained for each harmonic term was 
also computed on a per-pixel basis to assign a level of 
confidence for the single/double/triple crop categorization. 
Three confidence levels—high, medium and low—were 
assigned to the crop cycle classification. The NDVI profiles 
of the medium and low confidence areas were further 
manually explored to determine the number of crop cycles.

The Fourier analysis provides the approximate time period 
(phase) of the peak NDVI for each component. It was found 

that the phase value of the areas where two crop cycles 
are present can offer information for an initial separation 
between rainfed double crops and irrigated double crops. 
The phase angle value of the double-crop cycle in areas 
depends on the remaining moisture of the first crop or, 
in regions where a second rainfall season is present, is 
different from irrigated double-crop areas. The phase 
angle value of double-crop areas was explored to arrive at 
thresholds to separate rainfed double-crop and irrigated 
double-crop areas. 

Figure 8. Phase images indicating the time period of the peaks in the first two Fourier amplitudes.
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Since many areas in Ethiopia have more than one crop 
cycle depending on the remaining moisture of the first 
cropping season or the occurrence of a second rainfall 
season, the information on the number of crop cycles 
alone cannot be used as an identifier of irrigated areas. 
To determine whether an area is rainfed or irrigated, 
further information was required about the dependence of 
agriculture on rainfall.

The rainfall patterns affect the trends of plant growth in 
agriculture and other natural vegetation types. At the 
same time, the NDVI—rainfall trends (Figures 4 and 5) 
show that irrigated and rainfed areas exhibit varying levels 
of dependence on rainfall. Further analysis was focused 
on the quantification of the dependence of agriculture on 
rainfall. More specifically, the analysis was intended to 
explore the temporal relationship between the growth of 
green vegetation in croplands and the rainfall season. The 
analysis assumes that rainfed agriculture should have a 
strong positive correlation with the rainfall period, while 
the irrigated areas will have a weaker correlation. Other 
forms of water management should exhibit varying levels 
of correlation between these two extremes.

The temporal relationship between the intra-annual NDVI 
and rainfall time series was quantified using a time-lagged 
regression between these two data sets. Rainfall was 
considered as the independent variable and NDVI as the 
response variable. It has been observed that the vegetation 
response to rainfall has a time lag (Ji and Peters 2005), 
and therefore time-lagged regression was performed to 
assess this relationship. A time lag of one step in the time 
series (16 days) was used for the analysis, and the lagged 
correlation coefficient r was estimated for each pixel 
(Figure 9).

While the r values range from -0.92 to 0.96, the 
values of the agricultural areas range from -0.85 to 
0.93. Broadly, the correlation estimates derived from 
the lagged regression demonstrate that the rainfed 
areas are positively correlated with rainfall and areas 
that show a high negative correlation are irrigated. 
Areas with various other forms of water management 
exhibited either low positive or low negative 
correlations. While this describes the general nature 
of the NDVI-rainfall relationship, it was observed 
that factors such as the presence of a large number 
of trees, period of cultivation, etc., also impact this 
relationship. 

Figure 9. Time series correlation between annual rainfall time series and annual NDVI time series from April 2015 to 
March 2016.
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Dry Season Moisture Status

Apart from supplementary irrigation and spate irrigation 
areas, most irrigated areas in Ethiopia receive irrigation 
during the dry season. Dry season moisture status in 
the croplands was identified as a potential variable to 
distinguish irrigated and rainfed areas. We used NDMI 
derived from Landsat 8 OLI/TIRS Surface Reflectance 
images to assess the moisture status.

During the dry season, most irrigated landscapes might 
have a higher level of moisture content compared 
to the rainfed areas, but this may not be true in the 
case of wetlands, riverbeds, valley bottoms and 
areas where various forms of water management 
exist. Additionally, the moisture levels estimated 
through satellite images may be affected by several 

factors such as the proximity of dates of images and 
the period of irrigation, variations in the intensity of 
irrigation, soil type, crop type, etc. As these factors 
have significant variability across the country and 
since there is no ground truth information available 
for moisture status, it was not possible to use this 
variable alone as a quantitative measure to enhance 
the classification. Therefore, NDMI was used as a 
complementary variable along with the measures 
derived through the seasonality analysis.

We used NDMI images from January 2016 for the analysis 
of moisture status. Wherever images from January were 
not available due to cloud cover, images from February 
2016 were used for the NDMI calculation (Figure 10). 
Images from the other months had significant cloud cover 
and were thus not suitable for the analysis.

Figure 10. Normalized Difference Moisture Index (NDMI) of January and February 2016.

Overlay Analysis and Classification 

The agricultural landscape was categorized by combining 
the following variables to describe crop cycles, landscape 
mixture, rainfall dependence and dry season moisture 
status.

•  Time-lagged correlation between NDVI and  
rainfall time-series.

•  Number of crop cycles. 
•  Time period of maximum NDVI for multiple crop  

cycles.
•  Dry season NDMI derived from January or  

February images.
•  The Landsat-based agricultural area map as 

a mask to exclude non-agricultural areas.

The classification was performed by developing suitable 
thresholds for each of these variables to ensure optimal 
separation of irrigated and rainfed categories. The 
available ground truth information and high-resolution 
images available in Google Earth were used extensively 
to explore a large number of pixels to develop these 
thresholds. Thresholds were identified regionally to 
account for the spatial variations in rainfall and irrigation 
patterns. The results were examined visually with ground 
truth data and Google Earth data, and thresholds were 
iteratively refined locally to improve the results. The 
individually categorized layers were combined through an 
overlay analysis. The outputs were visually compared with 
ground truth data, Landsat images and Google Earth data, 
and corrections were made to improve the results. 
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Accuracy Assessment

An ideal accuracy assessment procedure requires 
ground verification of randomly generated sample 
locations during the period from which images were 
used. Since such a data set was not generated for 
this study, we utilized existing secondary data sets 
obtained from the government departments and past 
studies described in the section Data Sources. A set of 
1,100 points, which were not used in the classification 

process, were used for the validation of the final map. 
The points were selected after ensuring the suitability 
of the points for a pixel-to-pixel accuracy assessment, 
as described earlier. Only locations from irrigated 
areas were available for validation. Coordinates of 
rainfed areas were not available in this data set for 
the accuracy assessments. The proportion of the 
number of points correctly classified as irrigated was 
calculated to arrive at an estimation of the accuracy of 
the results.

Results and Discussion

The outcome is a map of agricultural areas of Ethiopia 
classified into irrigated and rainfed categories, with a pixel 
resolution of 30 m. As described in the section Materials 
and Methods, the crop area classification and irrigated 
area identification were performed in successive stages of 
the analysis. The results of each step are discussed below.

Crop Area Classification

The crop area map (Figure 11) is the result of a rapid 
classification of 59 Landsat 8 scenes using the cloud 
computing facilities offered by Google Earth Engine. 
The classification of agricultural areas requires the 
sampling of non-agricultural landscapes with sampling 
intensity similar to agricultural areas to exclude possible 
misclassification of these areas into agriculture. However, 
the focus of the analysis was to separate agriculture 
from various other land cover categories. Except for 
the agriculture class, all other land use categories were 
removed from the final map. The crop area map includes 
areas with standing crops, harvested crops and fallow 
lands that may not have been cultivated during the study 
year. The total area of croplands, including all these 
categories, is 21,845,290 ha (Table 2).

Irrigated Area Mapping

The analysis was performed using the images acquired 
between April 2015 and March 2016. The final map consists 
of the following two categories:

1.  Irrigated agriculture: Includes areas with at least 
one crop cycle using irrigation as a water source.

2.  Rainfed agriculture: Areas where water 
requirements are met directly from rainfall. 

The crop area map was produced solely using the Landsat 
8 images with 30 m resolution; the resolution of the final 
output also remains the same. The irrigated/rainfed area 
classification was performed using the crop area and NDMI 
layers with 30 m resolution and phenological variables with 
250 m resolution. The final maps of agricultural area and 
irrigated/rainfed areas are produced at 30 m resolution 
(Figure 11 and 12). 

The extent of irrigated and rainfed areas in different 
regional states is provided in Table 2. These statistics 
for zones and woredas6 (districts) are provided in the 
Appendix.

6 Woreda is the third-level administrative division of Ethiopia.
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Figure 12. Map of irrigated and rainfed areas in Ethiopia during the period 2015-2016 mapped at 30 x 30 m resolution. 

Figure 11. Agricultural areas in Ethiopia during the period 2015-2016 mapped at 30 x 30 m resolution. The crop areas also 
include fallow lands.
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The results show that only around 5% of the estimated 
agricultural area in Ethiopia is under irrigation in 2015-
2016. The total area under irrigation estimated by this 
study is approximately 1.11 Mha. The extent of rainfed 
agriculture was estimated at 20.7 Mha. The large regional 
states, such as Oromia and Amhara, have the largest 
areas under irrigation. Together, these two regions 
cover ~67% of the entire irrigated area in the country 
(Table 2). However, the percentage of irrigated areas 
within croplands is highest in Afar (63.2%), followed by 
Gambela (33.7%) (Figure 13). Afar region is characterized 
by an arid and semi-arid climate with low and erratic 
rainfall patterns (Melese et al. 2018). As a result, rainfed 
farming is not feasible in most areas of the region. On the 
other hand, the availability of water sources and private 

investments in commercial farms would have aided 
irrigated agriculture in Gambela (Degife et al. 2018).

The accuracy assessment of the results based on the GPS 
coordinates of the irrigated areas obtained from MoA 
shows an agreement of 70% with the classified output. The 
validation data set contains only irrigated area locations, 
and hence only the error of omission (exclusion) could be 
estimated from these data. Since the MODIS NDVI data 
have a relatively coarse pixel resolution of 250 m, it is likely 
to include multiple land cover types in many areas. This 
has been observed as being a major contribution to errors 
in area estimation using coarse resolution mapping. By 
combining the Landsat-derived NDMI with a pixel resolution 
of 30 m, the results were spatially better refined. 

Table 2. Area of irrigated and rainfed agriculture in different regions of Ethiopia.

Region     Area (hectares)

 Irrigated agriculture Rainfed agriculture Agricultural area

Addis Ababa 507  24,700  25,207 
Afar 72,835  42,339  115,174 
Amhara 315,356  6,449,491  6,764,847 
Benishangul- Gumuz 6,212  236,414  242,626 
Dire Dawa 1,722  8,479  10,201 
Gambela 9,880  19,458  29,338 
Harari 2,542  15,133  17,675 
Oromia 428,026  9,539,555  9,967,581 
SNNPR 195,028  2,563,431  2,758,459 
Somali 18,567  241,927  260,494 
Tigray 59,753  1,593,935  1,653,688  
 
Total area 1,110,428  20,734,862  21,845,290 
 
Note: SNNPR - Southern Nations, Nationalities, and People’s Region. 
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Figure 13. Percentage of irrigated areas within agricultural areas in the regional states.
Note: SNNPR - Southern Nations, Nationalities, and People’s Region.
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Comparison of the Results with Other 
Estimates
The total crop area estimated by this study is 21.8 Mha, which 
is close to a recent estimate of 18.1 Mha by government 
agencies (CSA 2018). Considerable variations exist in the 
irrigated area estimations of Ethiopia reported by different 
sources. MoWIE (2018) highlights some of these differences 
in estimations by various government agencies - the irrigated 
area estimate according to the Ministry of Agriculture and 
Natural Resources (MoANR) and the Ministry of Water, 
Irrigation and Energy (MoWIE) is 2.94 Mha, while it is 1.58 
Mha according to the data from various Regional Bureaus 
of Irrigation and MoWIE. A fresh assessment presented in 
MoWIE (2018) estimates the total irrigated area as 1.65 Mha, 
which was calculated using digitized Google Earth images 
and data from reports of regional agencies. As mentioned 
earlier, this study estimates the total irrigated area as 1.11 
Mha. A comparison of the region-wise results of MoWIE 
(2018) and this study is presented in Table 3. The major 
difference between these studies is in Oromia, followed 
by Somali region. This study reports the irrigated area of 
Oromia to be 428,026 ha, while MoWIE (2018) provides 
a much higher estimate of 756,578 ha. However, another 
recent report by the Oromia Irrigation Development Authority 
(OIDA) estimates the irrigated area in the Oromia region 
as 351,129 ha (OIDA 2018). The study conducted by OIDA 
(2018) used secondary data from district-level agencies, 
information collected from key stakeholders and partial site 
visits, and Google Earth images. The estimate of this study is 
much closer to that of OIDA (2018), which is based on a more 
detailed inventory. Secondary data from a similar inventory 
of the irrigated sites in Tigray by MoA show the irrigated area 
extent as 50,083 ha, whereas this study estimates the area as 
59,753 ha. Overall, the irrigated area estimates of this study 
broadly confirm the MoA estimations. 

Limitations of the Study
One of the limitations of this study is the possibility of 
limited success in identifying isolated small-scale irrigated 

plots. Even though one of the variables (NDMI) used for 
the analysis has a resolution of 30 m, the seasonality 
variables derived from the MODIS data have a pixel size 
of ~6.25 ha. The coarse pixel size may result in mixed 
pixels, including various land cover types in many areas, 
and this might have had an impact on the regression 
analysis. In a pixel-based classification, the pixels are 
generally allocated to the dominant land cover category 
present within the pixel. Therefore, any irrigated area 
which occupies a minor portion of the MODIS pixel needs 
to be identified only with a single variable—dry season 
NDMI. As described in the section Dry Season Moisture 
Status, NDMI alone would not be sufficient to identify 
irrigated areas because of the variations in moisture 
levels due to several factors, such as crop type, irrigation 
intensity, rainfall period, etc. The effect of mixed pixels 
can be reduced by utilizing higher resolution images. 
However, the availability of cloud-free, multi-spectral 
imagery required for the time series analysis is limited in 
most areas of Ethiopia. It may be worth considering the 
synthetic aperture radar (SAR) images, such as Sentinel 1 
data, to develop the crop growth profiles. 

Another limitation might be distinguishing areas with 
high soil moisture such as wetlands and valley bottoms 
from irrigated areas. These areas, with an abundance 
of soil moisture, are likely to show less dependence on 
rainfall for the crop growing season, and might exhibit 
similar crop growing and moisture patterns of irrigated 
areas. Integrating a map of wetlands and valley bottoms, 
and developing separate thresholds for analysis of these 
regions might help to improve the results in such areas.

The intra-annual rainfall time series derived from the 
CHIRPS rainfall product is one of the most important data 
sets used for the analysis. The results of the time series 
regression particularly rely upon the accuracy of rainfall 
estimates in the CHIRPS data product. While the CHIRPS 
data can replicate rainfall patterns reasonably well, it may 
have certain performance issues in higher elevation areas 
(Kimani et al. 2017).

Table 3. Comparison of region-wise irrigated area estimations of this study and a recent report by the Ministry of Water, 
Irrigation and Energy (MoWIE), Ethiopia.

Region  Irrigated agricultural area (hectares)
 This study  MoWIE (2018) 
Addis Ababa 507  406
Afar 72,835  72,525
Amhara 315,356  375,193
Benishangul-Gumuz 6,212  34,684
Dire Dawa 1,722  3,070
Gambela 9,880  28,407
Harari 2,542  3,106
Oromia 428,026  756,578
SNNPR 195,028  198,873
Somali 18,567  109,908
Tigray 59,753  69,901
Total area 1,110,428  1,652,651



IWMI - 19Working Paper 196 - Mapping Irrigated and Rainfed Agriculture in Ethiopia (2015-2016) using Remote Sensing Methods

Conclusions

This study presents the results of remote sensing-based 
mapping and area estimations of the irrigated and rainfed 
areas of Ethiopia in 2015-2016. Irrigated areas are mapped 
by analyzing the temporal relationship between remotely 
sensed vegetation and rainfall data sets and dry season 
moisture status estimated using remote sensing data. The 
results indicate that irrigated areas in this region can be 
identified reasonably well by analyzing seasonal variations 
in biomass and moisture levels.

While the analysis was reasonably successful in 
identifying irrigated and rainfed areas, improvements 
are required in identifying isolated small-scale irrigated 
areas, and the separation of irrigated areas and soil 
moisture-based cultivations in wetlands and valley 
bottoms. It must also be noted that the ground truth 
points used for validation only include irrigated areas. 
Better quantification of uncertainties may be achieved 
using more representative sample data sets such as 
rainfed area coordinates for validation, if available. 

The study estimates that an area of approximately 
1.11 Mha is currently irrigated, which is only around 
5% of the total agricultural area in Ethiopia. These 
results broadly confirm the available regional 
estimates of irrigated area extent by government 
agencies. Except for Afar and Gambela, all other 
regional states have a very small percentage 
of croplands under irrigation (< 10%). The high 
dependency on rainfed farming makes the food 
security of the region vulnerable to rainfall 
variability. The results of this study provide 
important information about the spatial extent 
and distribution of existing irrigated areas. The 
methodology presented here could be used for 
future monitoring of irrigation development in the 
country. A detailed irrigation suitability analysis 
combined with these results will provide valuable 
information for policy makers, decision-makers and 
investors about future irrigation development in 
Ethiopia.
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Appendix. Subnational statistics of irrigated areas.

Table A1. Zone-wise area of irrigated and rainfed crops in Ethiopia (2015-2016).

Regional state Zone  Area (hectares)

  Irrigated crops Rainfed crops

Addis Ababa Region 14 507  24,700 

Afar Zone 1 50,919  5,918 
 Zone 2 703  4,731 
 Zone 3 20,775  20,003 
 Zone 4 24  6,643 
 Zone 5 414  5,044 

Amhara Agew Awi 14,227  374,647 
 East Gojam 31,662  811,142 
 North Gonder 90,902  911,715 
 North Shewa (R3) 28,184  1,000,128 
 North Wollo 34,208  461,500 
 Oromia 7,892  125,220 
 South Gonder 36,149  809,085 
 South Wollo 28,916  896,471 
 Special Woreda 714  5,732 
 Wag Himra 467  199,110 
 West Gojam 42,035  854,741 

Benishangul-Gumuz Asosa 1,395  114,352 
 Kamashi 156  33,720 
 Metekel 4,661  88,342 

Dire Dawa Dire Dawa 1,722  8,479 

Gambela Anuak 5,778  18,693 
 Mezhenger 4,100  664 
 Nuer 2  101 

Harari Harari 2,542  15,133 

Oromia Arsi 20,391  1,178,022 
 Bale 39,445  746,438 
 Borana 921  95,654 
 East Hararghe 44,711  505,343 
 East Shewa 48,968  652,863 
 East Wellega 16,542  409,622 
 Guji 736  167,775 
 Horo Guduru Welega  19,524  270,782 
 Ilubabor 1,516  425,149 
 Jimma 15,018  741,054 
 Kelam Wellega 6,084  279,249 
 North Shewa (R4) 53,021  868,123 
 South West Shewa 12,964  533,871 
 West Arsi 7,754  716,615 
 West Hararghe 36,137  584,182 
 West Shewa 97,892  868,678 
 West Wellega 6,402  496,135 

(Continued)
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Table A1. Zone-wise area of irrigated and rainfed crops in Ethiopia (2015-2016). (continued)

Regional state Zone  Area (hectares)

  Irrigated crops Rainfed crops

SNNPR Alaba 4  76,436 
 Amaro 2,115  21,190 
 Basketo -  11,798 
 Bench Maji 18,555  92,500 
 Burji 2,066  23,720 
 Dawro 4,607  76,611 
 Derashe 13,196  41,904 
 Gamo Gofa 50,519  294,148 
 Gedio 353  7,585 
 Gurage 4,360  331,380 
 Hadiya 91  236,314 
 Kembata Tembaro 2,638  108,132 
 Keffa 45,222  199,494 
 Konso 6,778  56,394 
 Konta 1,362  14,945 
 Selti 997  201,441 
 Sheka 1,914  26,423 
 Sidama 13,327  325,330 
 South Omo 24,660  121,209 
 Wolayita 774  266,311 
 Yem 1,490  30,166 

Somali Afder 1,234  24,062 
 Degehabur 5  15,033 
 Fik -    5,140 
 Gode 14,725  7,136 
 Jijiga 109  169,924 
 Korahe 8  148 
 Liben 275  7,572 
 Shinile 2,211  11,318 
 Warder -    1,594 

Tigray Central 5,719  456,365 
 Eastern 4,428  234,663 
 Northwestern 5,758  334,501 
 Southern 24,607  360,604 
 Western 19,241  207,802 

Total area  1,110,428  20,734,862 
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