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Summary

All countries experience multiple climate-related 
risks that vary spatially and in time, and the 
combined impact of such risks may turn out to 
be very severe. To prioritize climate adaptation 
strategies, there is a need for quantitative, 
regional-level assessment of these risks. This 
report suggests methods for mapping such risks 
and estimating their impacts on people and 
agriculture in South Asia. Regional, country-wise 
and sub-national assessment of five climate-
related risks – floods, droughts, extreme rainfall, 
extreme temperature and sea-level rise – is 
carried out. The approach involves overlaying 
climate hazard, sensitivity and adaptive capacity 
maps, and follows the vulnerability assessment 
framework of the Intergovernmental Panel on 
Climate Change (IPCC). A combined index 
based on hazard, exposure and adaptive capacity 
is introduced to identify areas susceptible to 
extreme risk. 

The study presents a detailed and coherent 
approach to fine-scale climate hazard mapping 
that allows unambiguous identification of regions 
in South Asia which are most vulnerable to 
climate-related hazards. The study used data 
on the spatial distribution of various climate-

related hazards in 1,398 sub-national areas 
of Bangladesh, Bhutan, India, Nepal, Pakistan 
and Sri Lanka. An analysis of country-level 
population exposure showed that approximately 
750 million people are affected by combined 
climate hazards. Of the affected population, 72% 
is in India, followed by 12% each in Bangladesh 
and Pakistan. The remaining 4% is divided across 
Bhutan, Nepal and Sri Lanka. It was identified that 
agriculture was the most vulnerable sector due to 
its exposure to climate extremes, and that climatic 
upheavals had a direct impact on the economy 
of the country. An analysis of individual climate-
related hazards indicates that floods and droughts 
affect agricultural areas the most, followed by 
extreme rainfall, extreme temperature and sea-
level rise. Based on this vulnerability assessment, 
the regions that are most vulnerable to climate-
related hazards in South Asia were identified - all 
the regions of Bangladesh; the Indian states of 
Andhra Pradesh, Bihar, Maharashtra, Karnataka 
and Orissa; Ampara, Puttalam, Trincomalee, 
Mannar and Batticaloa in Sri Lanka; Sindh and 
Balochistan in Pakistan; Central and East Nepal; 
and the transboundary river basins of Indus, 
Ganges and Brahmaputra.
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Mapping Multiple Climate-related Hazards in South Asia
Giriraj Amarnath, Niranga Alahacoon, Vladimir Smakhtin and Pramod Aggarwal

Introduction

It is important to first list the terms and definitions 
that are used in this report. As defined by 
UNISDR (2009) and IPCC (2012), the basic 
components that should be considered in risk 
assessment are hazard and elements at risk, 
including their exposure and vulnerabil ity. 
Hydrometeorological or natural hazard refers to 
a process or phenomenon of an atmospheric, 
hydrological or oceanographic nature that may 
cause loss of life, injury or other health impacts, 
damage to property, loss of livelihoods and 
services, social and economic disruption, or 
environmental damage (UNISDR 2009; IPCC 
2012). Examples relevant to this report include 
floods, droughts, extreme rainfall, extreme 
temperature, and sea-level rise and are discussed 
in detail later. 

Exposure refers to the presence, in hazard 
zones, of the elements at risk (e.g., people, 
infrastructure) that could be adversely affected 
and thereby subject to potential losses. Exposure 
is essentially a qualitative notion. Population 
exposure to hazard is defined, for example, 
as the likelihood that an individual in a given 
location is exposed to a given type of climate-
related hazard over a certain period of time. 
Vulnerability refers to the characteristics and 
circumstances of a community, system or asset 
that make it susceptible to the damaging effects 
of a hazard (UNISDR 2009), i.e., predisposition 
of a community, system or asset to be adversely 
affected by a hazard. Vulnerability is, therefore, 
a measurable parameter. It can encompass 
economic, social, geographic, demographic, 
cultural, institutional, governance-related and 
environmental factors (IPCC 2012, 2014). Hence, 

measuring vulnerability is a complicated task and 
subject to interpretation. However, several authors 
strictly refer to the physical and environmental 
vulnerability (e.g., Cutter and Finch 2008; Kappes 
et al. 2012a; Pasini et al. 2012; Srinivasa 
Kumar et al. 2010), while others focus on the 
socioeconomic characteristics and damages (e.g., 
Orencio and Fujii 2014; Rufat et al. 2015; Füssell 
and Klein 2006; Malone and Engle 2011; Gallina 
et al. 2016). 

Disaster is understood as a serious disruption 
of the functioning of a community or a society 
involving widespread human, material, economic 
or environmental losses and impacts, which 
exceeds the ability of the affected community or 
society to cope using its own resources (UNISDR 
2009). Disaster is, therefore, seen primarily as an 
individual event – a realization of a hazard with a 
certain magnitude, extent and other parameters 
(unrelated to vulnerability). As hazard has varying 
degrees of severity through its realization in 
disasters, the more intense or severe the disaster, 
the greater is the potential for damage. 

Finally, risk is understood as the probability 
that  exposure to  a  hazard wi th  a  g iven 
vulnerability will lead to negative consequences. 
It is, therefore, quantified potential consequences 
of a hazard – potential loss of lives, health 
status, livelihoods, assets and services, which 
could occur within a particular community or 
society due to disaster over some specified 
future time period. Thus, a hazard poses no 
risk, if the system/community is not vulnerable 
(this is likely to be the case only when there is 
no exposure to that hazard, i.e., no presence of 
people and infrastructure in the hazard zone). 
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Related to this, disaster risk reduction (DRR) is 
the concept and practice of reducing risks by 
making systematic efforts to analyze and manage 
the causal factors of disasters, including through 
reduced exposure and vulnerability to hazards, 
and improved preparedness for disaster events. 
In this context, risk assessment is a methodology 
to determine the nature and extent of risk, by 
analyzing potential hazards and evaluating 
existing conditions of vulnerability that could 
together cause potential harm to people, property, 
services, livelihoods and the environment on 
which they depend (UNISDR 2009).

Extreme climate events regularly affect 
economic sectors and aspects of life, including 
agriculture, food security, water resources and 
health. The number of climate-related disasters 
(e.g., droughts, floods, landslides), globally, 
significantly increased in recent decades, from 
an average value of 195 per year (1987-1998) 
to 338 per year (2000-2011) (Guha-Sapir et al. 
2012). In 2011, some 45% of recorded deaths 
and around USD 1,209 billion in economic losses 
were due to such disasters (Guha-Sapir et al. 
2012). According to a World Bank report on the 
main hot spots of natural hazards (Dilley et al. 
2005), about 3.8 million square kilometers (km2) 
and 790 million people in the world are highly 
exposed to at least two climate-related hazards, 
while about 0.5 million km2 and 105 million people 
are exposed to three or more hazards. Climate 
change (CC) further increases the exposure 
to multiple hazards, affecting their magnitude, 
frequency and spatial distribution (IPCC 2014).  

At a global level, the World Bank initiated 
(Dilley et al. 2005) and Munich Re conducted 
(Touch Natural Hazards, www.munichre.com) a 
large-scale analysis of natural hazards, allowing 
a spatial visualization of hot spots where different 
hazards occur (e.g., floods, droughts, cyclones, 
earthquakes) using simple indices such as 
potential economic losses and human mortality. 
Such analyses are invaluable as global snapshots 
of the problem, but are normally not detailed 
enough to guide local DRR action. 

In  South Asia,  in terest  in  mul t i - r isk 
assessment increased during the last decade, 
especially in relation to applications and 

initiatives aimed at the assessment of risks 
derived from different natural and man-made 
hazardous events (e.g., Scolobig et al. 2014; 
Kappes et al. 2012b). In Bangladesh, a recent 
study by the Asian Disaster Preparedness 
Centre (ADPC) supported by the national 
Disaster Management Agency identified, at sub-
national level, hot spots where the population 
might be exposed to several hazards at the 
same time. For Nepal, a few studies supported 
by the Global Facility for Disaster Reduction 
and Recovery (GFDRR) of the World Bank, 
and the vulnerability assessment conducted by 
the International Water Management Institute 
(IWMI) at watershed level, mapped various 
hazards as well as the necessary interventions 
for risk reduction (ADPC 2010). Similar efforts 
in developing hazard and risk information in Sri 
Lanka were supported by the United Nations 
Development Programme (UNDP) (MoDM 2005). 
In India and Pakistan, most relevant studies 
have been confined to state/district level (Abid et 
al. 2016; Deen 2015; Kunte et al. 2014; Guleria 
and Patterson Edward 2012; Rafiq and Blaschke 
2012; Saxena et al. 2013).

O v e r a l l ,  m o r e  d e t a i l e d  a n d  r o b u s t 
assessments are required to actually guide DRR 
and CC adaptation investments at regional and 
sub-national scales, and to support climate justice 
principles that help distribute resources to states 
that are disproportionately impacted (Lerner-Lam 
2007). The present study aims to contribute to 
filling this gap for the South Asia region. The 
objectives of this study are to:

●	 develop approaches for high-spatial-resolution 
mapping of areas exposed to several climate-
related hazards: floods, droughts, extreme 
rainfall, extreme temperature and sea-level 
rise; 

●	 develop a method for estimating the exposure 
of a population to individual natural hazards 
and their impacts on agriculture; and 

●	 assess the overall vulnerability and risk at the 
country level based on country-wide, urban 
and rural population exposure to the five 
hazards above.
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Data and Methods

Table 1 lists the main data sources used in the 
present study for the various hazards considered. 
Naturally, the assessment for different hazards had to 

be carried out at different spatial and temporal scales 
depending on the type of hazard, characteristics of 
the study area, and datasets publicly available.

TABLE 1. Details of datasets used for the mapping of climate-related hazards.

Hazard/feature	 Dataset	 Period 	 Spatial resolution 	 Temporal	 Source	

				    resolution

Floods	 Moderate Resolution Imaging	 2001-2013	 500 m 	 8 days	 National Aeronautics and Space 	

	 Spectroradiometer (MODIS)				    Administration (NASA)1; 	

	 surface reflectance product	 	 	 	 Amarnath et al. 2012;	

	 (MOD09A1)				    Amarnath 2014a

Droughts	 MODIS surface reflectance	 2001- 2013	 500 m	 8 days	 NASA1; Amarnath 2014b	

	 product (MOD09A1)

Extreme rainfall 	 Asian Precipitation – Highly- 	 1951-2013	 0.25 × 0.25	 Daily	 Yasutomi et al. 2011; NASA3	

	 Resolved Observational Data		  degrees (~27 km)			 

	 Integration Towards Evaluation					   

	 of Water Resources					   

	 (APHRODITE)2 and Tropical					   

	 Rainfall Measuring Mission					   

	 (TRMM)3 

Extreme	 MODIS surface temperature	 2001-2013	 5,000 m	 8 days	 NASA1	

temperature

Sea-level rise	 Tidal gauge on sea-level rise	 1930-2013	 Point observations	 Monthly	 Permanent Service for Mean Sea 	

					     Level (PSMSL)5 and General 	

					     Bathymetric Chart for the Oceans 	

					     (GEBCO)6

Digital Elevation	 Shuttle Radar Topography	 2000	 90 m		  Consortium for Spatial	

Model (DEM) 	 Mission (SRTM)4				    Information (CGIAR-CSI)

Socioeconomic	 Gridded Population of the	 2010	 2.5 × 2.5 degrees		  Socioeconomic Data and	

and agricultural	 World, version 3 (GPWv3)				    Applications Center (SEDAC) 	

data					     (CIESIN 2005a, 2005b)7	

	 Agricultural land	 2005	 1,000 m			 

						    

	 Human Development Index	 2012	 Country-wise		  Global land cover data	

	 (HDI)				    (European Space Agency)8	

						    

					     UNDP9

Notes:										        
1 https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod09a1					   
2 http://www.chikyu.ac.jp/precip/									       
3 http://pmm.nasa.gov/data-access/downloads/trmm							     
4 http://srtm.csi.cgiar.org/									       
5 http://www.psmsl.org/data/								      

6 http://www.gebco.net/									       
7 http://sedac.ciesin.columbia.edu/data/collection/gpw-v3							     
8 https://www.esa-landcover-cci.org/								      
9 http://hdr.undp.org/en/data
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Socioeconomic data from the Socioeconomic 
Data and Applications Data Center (SEDAC), 
operated by the Center for International Earth 
Science Information Network (CIESIN), a unit of 
the Earth Institute at Columbia University, and 
agricultural data from the European Space Agency 

Floods

More than one-third of the world’s land area is flood-
prone, affecting about 82% of the global population 
(Dilley et al. 2005; Mosquera-Machado and Dilley 
2009). According to EM-DAT (2015), about 3 billion 
people in more than 110 countries were affected 
by catastrophic flooding. Between 1980 and 2011, 
about 212,460 deaths were associated with floods 
worldwide. Destructive floods are common in tropical 
Asia (Kundzewicz et al. 2009).

Methods for mapping flood inundation and 
analyzing damage induced by floods include visual 
interpretation of satellite images (Jensen 2005), 
multi-spectral image classification (Sharma et al. 
2011), band rationing (Jain et al. 2006), contextual 
multi-temporal classification and object-based 
classification (Cleve et al. 2008). In this study, the 

FIGURE 1. Conceptual approach and flowchart used for indicator-based assessment of climate-related hazards and 
identification of vulnerability hot spots.

MODIS Surface Reflectance product (MOD09A1) 
(Sakamoto et al. 2007; Xiao et al. 2005) from 
the NASA’s Earth Observing System Data and 
Information System (EOSDIS) was used. This 
product was available for the period 2001-2013, 
which translates into 46 8-day composite images 
annually, or over 500 composites in total. Each 
8-day composite includes estimates of ground 
spectral reflectance of the seven spectral bands 
at 500 m spatial resolution. The flood inundation 
mapping algorithm, suggested by Amarnath et 
al. (2012) and verified against more resolute 
Advanced Land Observing Satellite Phased Array 
type L-band Synthetic Aperture Radar (ALOS 
PALSAR) (microwave) data, was used to identify 
water-related pixels (Figure 2) and classify them 
into temporary flooded or permanent water bodies 
in the context of land use and DEM.

(ESA) Global Land Cover were used to determine 
vulnerability and possible impacts of the five 
climate-related hazards considered in this study. 
The overall impact was determined by combining 
all individual hazard-specific assessments using a 
geographic information system (GIS) (Figure 1).
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A map of recurrently flooded areas in the South 
Asia region was prepared by overlaying each of the 
8-day flood maps from 2001 to 2013 (Figure 3). 

Darker pixels in blue show areas that are severely 
affected by flooding in the Ganges-Brahmaputra-
Meghna River Basin, and in the Indus River Basin.

FIGURE 2. (a) MODIS Terra satellite images, and (b) corresponding flood extent estimated using the flood inundation 
mapping algorithm of Amarnath et al. 2012.
	        (a)					              (b)  

FIGURE 3. Spatial distribution of flood frequency based on 13 years’ time series of MODIS imagery.



6

Droughts

Droughts are recurrent in South Asia, and their 
impacts on regional agriculture are enormous 
(SDMC 2010; Amarnath and Clarke 2016). The 
focus in this report is on meteorological and 
agricultural drought, characterized by rainfall 
deficit, declining soil moisture and consequent 
crop failure. During the period 2002-2003, South 
Asia faced one of the worst droughts, which was 
exceptional in terms of the magnitude, spatial 
extent and duration (Patel et al. 2007, 2012; Dutta 
et al. 2013). In India alone, a drought has been 
reported at least once in every 3 years in the last 
five decades (Mishra and Singh 2009; UNISDR 
2009). The country incurred financial losses of 
about USD 149 billion and approximately 350 
million people were affected due to droughts in the 
past 10 years (Gupta et al. 2011; SDMC 2010). 
Traditionally, most meteorological departments in 
South Asia monitor droughts using observations 
at weather stations. Such point observations, 
although useful, have limited ability to trace 
the spatial extent and dynamics of the drought 
(http://www.imdpune.gov.in/Clim_Pred_LRF_New/
Products.html). Such spatial and continuous view 
is provided by remote sensing technology with the 
use of various drought-related indices.

A number of drought-related indices have been 
applied for drought monitoring in recent decades 
(Bhuiyan et al. 2006; Brown et al. 2008; Dutta et 
al. 2013; Gebrehiwot et al. 2011; Ghulam et al. 
2007; Kogan 1995; Mishra and Singh 2009; Rhee 
et al. 2010; Thenkabail et al. 2004; Qin et al. 2008; 
Zargar et al. 2011). Gu et al. (2007) developed the 
Normalized Difference Drought Index (NDDI), which 
can be used to assess drought by combining the 
Normalized Difference Vegetation Index (NDVI) 
and the Normalized Difference Water Index (NDWI) 
(Gouveia et al. 2012).

wavelengths, respectively. Both indices range 
from 0 to 1. NASA’s MODIS Surface Reflectance 
data from 8-day composite images from 2001 to 
2013 (MOD09A1 with 500 m spatial resolution) 
were used to calculate NDVI (Equation [1]) and 
NDWI (Equation [2]) to determine the vegetation-
water stress and to calculate NDDI (Equation [3]). 
The product quality assessment (QA) flags in the 
MOD09A1 products provide information about 
different types of atmospheric noise. For each 
8-day period, a visual quality control in ArcGIS 
was made, of which the different QA values 
detected the cloud cover in the data period. After 
removing the clouds from the dataset, the next 
step was to replace the cloudy pixels with values 
as realistic as possible. NDVI and NDWI were 
then calculated from the MOD09Q1 dataset, and 
clouds were removed with the cloud mask. From 
these clear-sky, time-series of reflectance values, 
we calculated 13-year NDVI and NDWI values for 
each 8-day step during the period 2001-2013.

NDVI  =	                  (1)
	          p857 + p645
	          p857 – p645

NDDI  =	                  (3)
	          NDVI + NDWI
	          NDVI – NDWI

NDWI  =	                  (2)
	          p857 + p2130
	          p857 – p2130

NDDI captures areas that are subject to water 
and vegetation stress due to a delay in the onset 
of the summer monsoon, which generally occurs 
from June to September. NDDI is, therefore, a 
more sensitive indicator of drought in cropland 
than NDVI alone. NDDI varies in the range of 0 
to 1. In the current study, a pixel was categorized 
as being under drought if NDDI was greater than 
0.6 and as non-drought otherwise (based on a 
comparison of NDVI and NDWI in drought years 
and supported by similar studies elsewhere - Gu 
et al. 2007; Liu and Wu 2008). For mapping 
purposes, the drought and non-drought pixels 
were assigned values 1 and 0, respectively. 
At the final step, all individual 8-day maps of 
drought/non-drought conditions were combined in 
ArcGIS, and a number of cases where a drought 
was detected in any pixel over the study period 
were calculated. The final map was produced 
by normalizing the counts from 0 to 1, where 0 
means ‘no drought was ever detected in a pixel 
over the study period’ and 1 is ‘drought was 
detected in a pixel continuously’ (Figure 4).

where: ρ857, ρ645 and ρ2130 are the surface 
reflectance of 857, 645 and 2130 nanometer (nm) 
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FIGURE 4. Spatial distribution of drought frequency based on 13 years’ time series of MODIS imagery.

Extreme Rainfall

Extreme rainfall leads to crop failure, soil erosion, 
landslides, and may be a precursor of flash 
floods and inundation. Understanding and 
quantifying extreme rainfall events are critical to 
improving community resilience (Pattanaik and 
Rajeevan 2010; Guhathakurta and Rajeevan 
2006). Classification of rainfall events by the 
India Meteorological Department (IMD) for daily 
rainfall extremes (Table 2) was used to determine 
extreme rainfall zones for the entire region. Long-
term rainfall records from two major data sources 
(APHRODITE for the period 1951-2007 and 

TRMM for the period 2008-2013), covering a time 
frame of 62 years in total, were used to identify 
areas of extreme rainfall. Both APHRODITE and 
TRMM were used to examine the frequency of 
rainfall events for the three categories shown 
in Table 2, during the monsoon season in the 
months of June, July, August and September. The 
average frequency of each category during these 
months was calculated by adding the total number 
of rainfall events for each category in a particular 
grid cell for a given year. The total number of 
events from each grid cell is added for the entire 
region to obtain the total number of such events 
in South Asia.

TABLE 2. Categorization of observed rainfall for classification of extreme rainfall events.

Rainfall categories	 IMD classification of rainfall events 	 Rainfall (R), mm day-1 

Category 1 (low)	 Light to somewhat heavy 	 R <= 64.4

Category 2 (medium)	 Heavy	 64.4 < R <= 124.4

Category 3 (extreme)	 Very heavy to exceptionally heavy	 124.4 < R

Source: India Meteorological Department.
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FIGURE 5. Average frequency of rainfall events during the monsoon season (June to September) from 1951 to 2013 
for the entire South Asia Region in three categories – (a) 1 (low), (b) 2 (medium), and (c) 3 (extreme).

	  (a)

	  (b)

	  (c)

Figure 5 shows that the average frequency 
of extreme rainfall of categories 1 (low) and 3 
(extreme) exhibit an increasing trend (ρ values 
of 0.05), whereas category 2 (medium) exhibits 
a slightly decreasing trend during the monsoon 
season. This result is also consistent with a 

previous study on the spatial and temporal 
variability of rainfall events in India, which 
suggested a threshold value of 124.4 mm 
day−1 of rainfall as a threshold for extreme 
rainfall (category 3) in this region (Pattanaik and 
Rajeevan 2010).
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The procedure followed for characterizing 
spatial rainfall patterns was as follows: when 
the daily rainfall value exceeds a threshold of 
124.4 mm, those pixels on the rainfall grid map 
were classified as 1 and otherwise 0. The same 
process was applied for each set of satellite-
based daily rainfall data. These binary maps were 
overlaid to compute the frequency of extreme 
rainfall in pixels over the study period from 1951 
to 2013. Higher recurrence was pointed to high 
rainfall hazard, while lower recurrence to low 
hazard. The final dataset of extreme rainfall was 
normalized to a 0-1 scale.

The above procedure provided the spatial 
coverage of extreme events with a spatial 
resolution of 0.25° (approximately 27 km). 
More resolute extreme rainfall data are crucial 
for practical applications. Rainfall is related to 
variables such as topography and vegetation 
(Badas et al. 2005; Onema and Taigbenu 2009). 
The resolution of remote sensing data for these 
variables is higher. For example, the resolution 
of MODIS NDVI, a proxy of vegetation, has 

FIGURE 6. The time series of NDVI and rainfall for Tangail District in Bangladesh, illustrating the pattern of dependency 
of NDVI on rainfall.

reached 500 m by now. The spatial resolution of 
extreme rainfall map can, therefore, be improved 
by examining a relationship of rainfall with such 
variables (Figure 6). Immerzeel et al. (2009) 
improved the resolution of rainfall to 1  km by 
establishing such an exponential relationship 
between NDVI and TRMM. The present study 
used the geostatistical downscaling procedure of 
Immerzeel et al. (2009) to develop a final, high 
resolution (500 m) spatial product. Figure 7 is 
an example of a scatter plot of NDVI and rainfall 
in the Tangail District of Bangladesh, a region 
which is characterized as an extreme rainfall 
zone (category 3, Table 2). The figure illustrates 
the high correlation between NDVI and rainfall 
(0.93). In the creation of Figure 7, 8-day NDVI 
data for the months from June to September 
were layer-stacked and correlated with a satellite 
rainfall product to downscale it to 500 m. Figure 8 
presents the final, high-resolution extreme rainfall 
hazard map, which was developed using the 
geostatistical downscaling procedure of Immerzeel 
et al. (2009).
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FIGURE 7. Scatter plot illustrating the relationship between extreme rainfall and average NDVI values for Tangail 
District in Bangladesh.

FIGURE 8. Spatial distribution of extreme rainfall frequency based on 62 years’ time series of APHRODITE and TRMM 
rainfall datasets.
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FIGURE 9. Time series of land surface temperature and NDWI from February to May in Rajkot Taluk of the Gujarat 
State, India.

Extreme temperature

A heat wave (extreme temperature) is a prolonged 
period of abnormally hot weather. With an overall 
warming of the Earth’s climate, heat waves are 
expected to become more frequent, longer and 
more intense in places where they already occur 
(IPCC 2014). An increase in the frequency and 
severity of heat waves can lead to crop failure, 
increased livestock mortality, increased human 
illnesses and deaths, and power outages. Naturally, 
countries which are located closer to the equator 
have a higher risk of heat waves than those further 
away. Therefore, this is another major climatic 
hazard for the South Asia region. Heat waves are 
analyzed here only for the pre-monsoon season, 
because the impacts are likely to be experienced 
during that time of the year (Murari et al. 2015). 
Extreme temperatures associated with heat waves 
occur in South Asia in the second half of May and 
early June, reaching 40-45 °C in most of the heat-
stressed hot spot areas.

To analyze the heat wave hazard, MOD11C2 
data from 2000 to 2013, composited for 8-day 
periods, were used. MODIS land surface 
temperature (LST) data are based on the 
generalized split-window algorithm (Wan and 
Dozier 1996) and day/night algorithm (Weng et 

al. 2004), which resolve ambiguities arising from 
variable emissivity and are accurate to within 
1 °C in most cases (Wan 2008, 2014). The 
summer windows from day-of-year 55 to 154 
(late-February to early-June) for MOD11C2 were 
chosen based on correlation between temperature 
and NDWI (Figure 9). Data with poor calibration, 
cloud contamination or other quality issues were 
excluded based on the LST product quality 
assurance flags provided.

The MODIS-based LST anomaly products 
represent both higher and lower temperature 
variations from 0 to -12 °C and 0 to +12 °C, 
respectively, as shown in Figure 10. To map the 
heat wave hazard, only the highest temperature 
variations are considered; lower values in the 
range of 0-6 °C are not hazardous. For each pixel 
and each 8-day time period, the 2008-2013 mean 
values were subtracted to obtain temperature 
anomalies. When the temperature anomaly value 
was greater than 6 °C, pixels were classified as 
1 and otherwise as 0. All 8-day binary maps for 
the months from April to June were overlaid to 
calculate the frequency of a high temperature 
anomaly. Images were projected into a world 
cylindrical equal-area projection with 5 km × 5 
km cells, which is approximately equivalent to the 
0.05° × 0.05° resolution of the MODIS products. 
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To downscale the 5 km heat wave data into a 500 
m spatial resolution, an approach similar to that 
of downscaling extreme rainfall was used (Figure 

FIGURE 10. Land surface temperature (LST) anomalies for South Asia from (a) June 2 to 9, 2014, and (b) June 10 to 17, 2014.

Notes: LST anomalies are not absolute temperatures; instead, they show how much the land surface was heated above or below the 
average. The darkest red areas are those where the ground was as much as 12 °C above the normal value from 2001 to 2010; 
blue areas show where it was below the normal value; and grey areas highlight where there were incomplete data (usually due to 
excessive cloud cover).

11). The frequencies were then normalized to 0-1 
scale. The resulting heat wave hazard map is 
illustrated in Figure 12.

	          (a)

	          (b)
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FIGURE 12. Spatial distribution of the frequency of extreme temperature/heat waves.

FIGURE 11. Scatter plot illustrating the relationship between normalized extreme heat and NDWI values.
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Sea-level Rise

Accelerated sea-level rise (due to global climate 
change) is likely to increase the risk of coastal 
zone flooding by way of storm surges, tsunamis 
and severe wave processes (Mani Murali et al. 
2013). Population density in the coastal zones of 
South Asia has increased drastically during the last 
15 years, and this has led to a further increase 
in risk due to natural hazards (Mani Murali et al. 
2013). To date, the coastal hazard assessments 
were carried out at Puducherry and Cuddalore in 
South India (Mani Murali et al. 2013; Saxena et 
al. 2013), western Bangladesh (Karim and Mimura 
2008) and the Indus Delta in Pakistan (Salik et 
al. 2015). In this study, mapping of this hazard 
along the South Asian coast was carried out by 
integrating the following six different parameters:
●	 Rate of sea-level rise
●	 Coastal slope
●	 Regional elevation
●	 Tidal range
●	 Tsunami wave arrival height 
●	 Coastal geomorphology

FIGURE 13. Locations of tidal gauge stations (blue circles) on the South Asian coastline.

Rate of Sea-level Rise

Mean sea level can be defined as the seawater 
height with respect to a reference benchmark. 
Measurements of changes in sea level in South 
Asia are based on a total of 18 tidal gauge 
stations (Figure 13) obtained from the PSMSL 
(www.psmsl.org) program. By using PSMSL 
stations, tidal data on the annual rate of sea-level 
rise were calculated by establishing the trend of 
sea-level change between seawater height and 
time for each station. As an example, Figure 
14 shows the monthly changes in sea level in 
India within a 988-month (1914 to 2013) period. 
The trend line of monthly sea-level change is 
used to calculate the annual sea-level change 
(mm yr−1). In each case, the trend line was 
found to be statistically significant at the 5% 
level using a student’s t-test on each regression 
estimate of the trend coefficient. The annual rate 
of sea-level rise for all 18 tidal gauge stations 
was interpolated to generate a map showing 
the rate of sea-level rise for the entire South 
Asian coastline.
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FIGURE 14. Time series of sea-level change at (a) Dublakhal, and (b) Nagappattinam tidal gauge stations.

Coastal Slope

Coastal slope is defined as the ratio of altitude 
change to the horizontal distance between any two 
points on the coast. Coastal slope is linked to the 
susceptibility of a coast to inundation by flooding 
(Thieler 2000). The run-up of waves on a coast 
is the most important stage of a tsunami from the 
viewpoint of evaluating the level of tsunami hazard 

for the coast (Dotsenko 2005). Coastal slope is 
an important parameter in deciding the degree to 
which coastal land is at risk of flooding from storm 
surges and during a tsunami (Sterr et al. 2000). 
Coastal locations having gentle land slope values 
have great penetration of seawater compared 
to locations with fewer slopes, and resulting 
land loss from inundation is simply a function of 
slope: the lower the slope, the greater the land 
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loss (Sterr et al. 2000). Thus, coastal areas having 
gentle slope values were considered as more 
vulnerable areas, and areas with steep slopes as 
areas of low vulnerability. The methodology was 
adopted from the previous studies carried out in 
coastal areas of India (Mani Murali et al. 2013; 
Srinivasa Kumar et al. 2010).

GEBCO data of one-minute grid resolution 
coastal topography and bathymetry were used 
to obtain the regional slope of the coastal area. 
The data also incorporates land elevations 
derived from the Global Land One-kilometer 
Base Elevation (GLOBE) project datasets. A 90 
m SRTM DEM was also used. GEBCO data are 
useful in deriving the coastal slope values on both 
land and ocean. The slope values (in degrees) 
are calculated using the Environmental Systems 
Research Institute (ESRI) ArcGIS tool.

Regional Elevation

Regional elevation is referred to as the average 
elevation of a particular area above mean sea 
level. From the vulnerability perspective, higher 
elevation values will be considered as being less 
vulnerable to future sea-level rise, because such 
elevation provides more resistance to inundation 
due to rising sea level or storm surges. Coastal 
areas with low elevation are considered to be 
highly vulnerable to sea-level rise.

Tidal Range

Tidal range is the vertical difference between 
the highest high tide and the lowest low tide, 
and coastal areas with a high tidal range are 
characterized as highly vulnerable. For the current 
study, data from WXTide software (http://www.
wxtide32.com/) for the year 2011 were used as 
a base to calculate the predicted tidal range. 
Altogether, 18 stations were used to analyze 
average tidal range, and assign high tidal range 
for highly vulnerable areas and low tidal range for 
less vulnerable areas.

Tsunami Wave Arrival Height

Tsunamis can cause flooding due to the intrusion 
of seawater up to 1 km inland or even further. 
Based on previous studies (Mani Murali et al. 

2013; Srinivasa Kumar et al. 2010), the risk 
ratings were assigned to predict the run-up 
heights and travel times of a tsunami wave at 
different parts of the coastline.

Coastal Geomorphology

Coastal geomorphology is yet another parameter 
that determines how vulnerable the coastline is 
to sea-level rise caused by CC. Landsat TM and 
ETM+ satellite images, and a Digital Terrain Model 
were used to describe the coastal geomorphology. 
The geomorphologic classes were defined based on 
visual interpretation with a coastal zone of 1 km to 
identify major classes that include sandy beaches, 
inundated coast, cliffs, estuaries, mangroves, 
salt pans, etc. Further, these geomorphologic 
classes were assigned a risk rating as high 
vulnerability (sandy beaches, deltas, mangroves, 
salt pans), moderate vulnerability (estuaries) and 
low vulnerability (inundated coast and cliffs).

Composite Sea-level Rise Hazard Index

Each of the six parameters described has been 
categorized into low to high classes and ranked 
as shown in Table 3. The total rank (R) of all six 
hazard parameters was calculated as a sum of 
the rank given to individual parameters (Equation 
[4]), assuming that all parameters make an equal 
contribution.

R  = Rr + Rc + Re + Rt + Rs + Rg                (4)

SLR  = (R – Rmin) / (Rmax – Rmin)           (5)

Where: Rr is the rank of the rate of sea-level 
rise, Rc is the rank of coastal slope, Re is the rank 
of regional elevation, Rt is the rank of tidal range, 
Rs is the rank of tsunami wave arrival height and 
Rg is the rank of coastal geomorphology. The six 
parameter map layers were then overlaid and the 
final normalized composite sea-level rise (SLR) 
hazard index was calculated using Equation (5).

where: Rmin and Rmax are minimum and 
maximum values of the total hazard ranks, 
respectively. SLR ranges between 0 and 1, as 
for all other hazards described in earlier sections. 
Figure 15 shows the final map of the composite 
index for sea-level rise (SLR) hazard.
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FIGURE 15. Composite index for sea-level rise (SLR) hazard.

Combined Hazard Index (CHI)

Each of the individual hazards – floods, droughts, 
extreme rainfall, heat waves and sea-level rise – 
is classified initially into hazard and non-hazard 
areas to calculate the frequency of multi-hazard 
for a given pixel using Equation (6).

where: CHI is the standardized hazard of type 
i, Xi is the non-standardized hazard of type i, and 
(Xi)min and (Xi)max are the minimum and maximum 
values, respectively, of the ith hazard.

Indicator maps were then overlaid to calculate 
the overall hazard score by summing the above 
binary data for each pixel. A score between 1 
and 5 indicates the number of times a particular 
hazard occurred. The resulting multi-hazard 
map is shown in Figure 16, with a few enlarged 
windows for better visibility.

TABLE 3. Ranks of six different parameters used in the mapping of sea-level rise.

Parameter 	 Hazard rating

	 Low (1) 	 Medium (2)	 High (3) 

Rate of sea-level rise (mm yr-1 )	 <= 0.5	 > 0.5 and <= 1.0	 > 1.0

Coastal slope (degrees)	 > 1.0	 > 0.2 and <= 1.0	 >= 0 and <= 0.2

Regional elevation (m)	 > 6.0	 > 3.0 and <= 6.0	 >= 0 and <= 3.0

Tidal range (m)	 <= 2.5	 > 2.5 and <= 3.5	 > 3.5

Tsunami wave arrival height (m)	 >= 0 and <= 1.0	 > 1.0 and <= 2.0	 > 2.0

Geomorphology 	 Inundated coast, cliffs 	 Estuaries, vegetated coast	 Sandy beaches, deltas,	

			   mangroves, salt pans

CHI  =	                  (6)
	          (xi)max – (xi)min
	          xi – (xi)min
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Population Exposure

Population exposure scores for each grid 
cell were calculated separately for floods, 
droughts, extreme rainfall, heat waves and sea-
level rise. The population count in each cell 

Note: The darker the color, the higher the number of hazards experienced in that area.

FIGURE 16. Maps showing exposure to multiple hazards across Bangladesh, Bhutan, India, Nepal, Pakistan and Sri Lanka.

Cell Exposuredrought = Popcountcell x Hdrought, cell    	 (7)

Cell Exposuremulti-hazard = Popcountcell Ü 3 (Hfloods + Hdroughts + Hextreme rainfall + Hextreme temperature + Hsea-level rise)		  (8)

(Popcountcell) was multiplied by the likelihood 
of that cell experiencing an individualclimate 
hazard (H). For example, for the drought hazard, 
the population exposure score is shown in 
Equation (7).

hazards. The types of hazard events were 
weighted equally.

As shown in Equation (8), a cell’s exposure 
to multiple climate hazards is determined by 
summing the values of exposure to individual 

Population exposure to each climate hazard is 
shown in Figure 17. Figure 18 shows population 
exposure to multiple climate hazards in eastern 
India and Bangladesh.

Population exposure to individual and multiple 
climate hazards was calculated at incremental 
scales, at city, district and national level based on 

the respective extents. The cell exposure values 
within each geographical boundary of urban, rural and 
country extents under consideration were summed 
over the study region to calculate the average 
population exposure scores. Further, exposure 
of each country/region to individual and multiple 
hazards was derived from the resultant dataset. 
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Note:	 The area of high exposure (dark brown overlaid with red urban extent) in Dhaka, Bangladesh, represents higher population 
exposure due to the dense concentration of people living in that area and is not necessarily higher population exposure. White 
areas in Dhaka represent locations where no climate hazard events were reported during the period of analysis.

FIGURE 18. Population exposure to multiple climate hazards in eastern India and Bangladesh.

Country/regional scores were used to 
compare and rank countries/regions based on 
average population exposure to each individual 

Values of country/regional-level exposure to 
floods, droughts, extreme rainfall, heat waves 
and sea-level rise have a theoretical maximum 
value of 1 (i.e., the entire population of a country 
is exposed to the combined multiple hazard). 
Total average population exposure was calculated 
as the sum of exposure values of all cells in a 

country divided by the total population of all cells 
in the country (Equation [9]). The theoretical 
maximum value for total average population 
exposure is 5. Cell exposure values were 
calculated for each individual climate hazard 
(floods, droughts, extreme rainfall, heat waves and 
sea-level rise) and for multiple hazards together.

		     3 Cell Exposurecountry

PopTotal country

Average Population Exposurecountry = 	 	 (9)

climate hazard (floods, droughts, extreme rainfall, 
heat waves and sea-level rise) and for multiple 
hazards together.
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FIGURE 19. Land cover map used to quantify the impact of climate hazards on agriculture.

Data source: European Space Agency (ESA) Climate Change Initiative for South Asia.

Agricultural Exposure

Information on agricultural exposure to climate 
hazards was derived using SPOT vegetation land 
cover satellite data (Figure 19). Exposure was 

calculated separately for floods, droughts, extreme 
rainfall, heat waves and sea-level rise, as well 
as to estimate the overall damage from multiple 
climate hazards.

Results and Discussion

Hazard-specific Impact Assessment

The overall climate hazard map (Figure 20) ranks 
district-level areas in South Asia according to their 
exposure to multiple hazards (floods, droughts, 
extreme rainfall, heat waves and sea-level rise). 
The darkest parts of the map indicate those 
areas that have the highest exposure to multiple 
hazards.

Results presented in this section are in the 
form of rankings based on integrated climate-
hazard variables, and exposure related to 
agriculture and population at the sub-national 
and regional levels. In Figure 16, these are 
displayed as district-level exposure with equal 
intervals (maroon = highest quintile of exposed 
risk). Further, the multi-hazard ranks have been 
compared with sensitivity variables, including 
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population exposure, agricultural impacts and 
the Human Development Index (HDI), to identify 
areas vulnerable to risks (UNDP 2013, 2015). The 
2012 HDI has been used in four development 
classes (low, medium, high and very high) based 

Population Exposure to Individual Hazards

Figures 17 and 18 describe population exposure 
to individual and multiple hazards, providing 
an interesting summary of exposure to the five 
climate-related hazards discussed in this report. 
Country-level rankings of population exposure 
to various hazards (floods and droughts, in 
particular) are listed in Tables 4 and 5. It can 
be seen that exposure to drought is more 
widespread than exposure to extreme rainfall and 
sea-level rise in South Asia. Populations with high 
exposure to drought during the 2001-2013 period 
of analysis include those in far northwestern 
India, Pakistan, and north and southeast Sri 
Lanka. Countries in South Asia that experience 
monsoon variability and a small decrease or 
delay in rainfall may be highly exposed to 

FIGURE 20. Classification of districts in South Asia according to their exposure to multiple hazards.

drought. Further, exposure to drought was greater 
as HDI class decreased. At the sub-national level, 
drought-prone states of Maharashtra, Gujarat and 
Rajasthan, with a low HDI value, may be highly 
vulnerable than the regions with medium HDI 
values in Sri Lanka.

Analyzing country-level population exposure 
revealed that approximately 750 million people are 
affected by climate hazards of some sort. Of the 
affected population, 72% come from India, followed 
by 12% each from Bangladesh and Pakistan. The 
remaining 4% is divided across Bhutan, Nepal 
and Sri Lanka. With regard to population exposure 
to individual hazards, droughts affect the most 
number of people (293 million). This is followed by 
extreme rainfall (220 million), floods (170 million), 
extreme temperature (76 million) and sea-level rise 
(59 million) (Table 5).

on the country’s level of education, gross national 
income per capita and life expectancy at birth. For 
example, within South Asia, HDI values are higher 
for Bhutan, and selected states and provinces in 
Sri Lanka and India.
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The population of nearly all South Asian 
countries, especially those living in the Indus, 
Ganges, Brahmaputra and Meghna river basins, 
was highly exposed to flooding during the 
2000-2012 period of analysis. In contrast to 
drought, exposure to floods is distributed across 
all HDI classes. For example, Bangladesh, 
and the states of Bihar and Uttar Pradesh in 
India, along with Punjab and Sindh provinces 
in Pakistan, all with high population and low 
HDI values, are highly vulnerable areas. On the 
other hand, Bhutan and Sri Lanka, with moderate 
populations and high HDI values, are categorized 
as medium-risk areas.

Exposure to extreme rainfall is very similar to 
that of exposure to floods. Analysis of 65 years 

of rainfall data revealed that the frequency of 
extreme rainfall events is decreasing in major 
parts of central and north India, while they are 
increasing in peninsular, east and northeast 
India, and in the west of Sri Lanka. Nevertheless, 
extreme rainfall indices show increases in the 
South Asia average, consistent with globally 
averaged results (Kitoh et al. 2013). As with 
floods, population exposure to extreme rainfall is 
distributed across all HDI classes. For example, 
regions in east and northeast India, the Himalayas 
range in Nepal, and parts of Bangladesh, all with 
low HDI values, are highly vulnerable areas. 
Bhutan and Sri Lanka, with moderate populations 
and high HDI values, are, again, categorized as 
medium-risk areas.

TABLE 4. Population exposure corresponding to the number of occurrences of composite climate hazards.

	 Country	 Population exposure to the total number of multiple hazards	 Total affected	 Total	
		  occurred	 population	 population	
			   (millions)	  (millions)

	 1a	 2a	 3a	   4a and 5a		

Bangladesh	 59,436,143	 28,496,623	 3,476,050	 38,957	 91,447,774	 156,600,000

Bhutan	 227,261	 104,235	 373	 0	 331,869	 743,224

India	 402,789,651	 129,692,215	 6,559,698	 224,376	 539,265,941	 1,252,000,000

Nepal	 13,661,663	 622,986	 9,334	 0	 14,293,983	 27,800,000

Pakistan	 64,314,042	 23,840,586	 3,099,634	 42,952	 91,297,213	 182,100,000

Sri Lanka	 6,637,077	 2,174,791	 276,124	 15,935	 9,103,927	 20,480,000

Note: a The frequency mentioned in this table refers to a number of occurrences of any type of climate hazard.

TABLE 5. Population exposure to individual hazards.

	 Country	 	 	 Total affected population	 	 	 Total	 Total	
	 	 	 	 	 	 	 affected	 population	
		  Floods	 Droughts	 Extreme	 Extreme	 Sea-level	 population	 (millions)	

				    rainfall	 temperature	 rise	 (millions)		

Bangladesh	 53,126,863	 1,555,258	 50,895,845	 297,943	 22,071,103	 127.95	 156.60

Bhutan	 931	 208,470	 0	 0	 0	 0.21	 0.74

India	 101,461,595	 233,847,406	 151,185,736	 20,301,115	 34,001,550	 540.80	 1,252.00

Nepal	 1,590,753	 614,902	 12,713,208	 225,243	 0	 15.14	 27.80

Pakistan	 13,753,696	 54,940,373	 948,089	 50,925,713	 2,709,392	 123.28	 182.10

Sri Lanka	 1,045,301	 2,046,134	 4,304,666	 4,712,980	 660,238	 12.77	 20.48

Total	 170,979,139	 293,212,543	 220,047,544	 76,462,994	 59,442,283		
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In the case of heat waves, exposure is more 
broadly distributed than floods or extreme rainfall 
in South Asia. Populations with high exposure 
to heat waves during the 2001-2013 period of 
analysis include most parts of northwestern and 
southern India, Pakistan, and central and eastern 
Sri Lanka. At the sub-national level, states prone 
to heat waves in Andhra Pradesh, Telangana, 
Punjab, Uttar Pradesh, Odisha and Bihar in India, 
and Sindh, Punjab, Balochistan and Khyber 
Pakhtunkhwa provinces in Pakistan, with low HDI 
values, may be highly vulnerable when compared 
to regions with medium HDI values in Sri Lanka. 
The heat waves in India and Pakistan in 2015 
killed more than 3,500 people, and was the 
deadliest such events since 1979. The heat waves 
were caused, in the large part, by sparser pre-
monsoon seasonal showers, which brought less 
moisture than normal to the area. This left large 
parts of India and Pakistan dry. The cessation of 
pre-monsoon rain, an uncommon trend in India, 
contributed to the heat waves.

Exposure to sea-level rise was the highest 
in the states of West Bengal, Orissa and 
Maharashtra in India, followed by Bangladesh, 
Sindh in Pakistan, and Sri Lanka, during the 
period of analysis. Coastal regions with low 
HDI values are highly vulnerable to sea-level 
rise, followed by those with medium to high HDI 
values. Low-lying coastal cities are particularly 
vulnerable to the risks of storm surges and sea-
level rise. These cities include Karachi, Mumbai, 
Chennai and Dhaka, all of which have witnessed 

significant environmental stresses in recent years. 
These cities are likely to become more vulnerable 
to flooding in the future because high seawater 
levels provide a higher base from which storm 
surges advance. Higher seawater levels will also 
potentially increase the risk of flooding due to 
rainstorms, by reducing coastal drainage. This is 
because sea-level rise also raises the local water 
table. All these effects have potentially devastating 
socioeconomic implications, particularly for 
infrastructure in low-lying, deltaic areas.

Impacts of Weather-related Hazards on 
Agriculture

Agriculture is particularly prone to multiple risks 
(Amendola et al. 2007; Christenson et al. 2014; 
Hirabayashi et al. 2013), including weather-related 
hazards, affecting many farmers at once. Some 
weather-related risks, such as droughts and floods, 
have a systemic component, in that they can affect 
most farmers within an entire region or country. 
Other weather-related risks, such as extreme 
rainfall and extreme temperature, are more location 
specific. Being exposed to such climate extremes, 
agriculture is an extremely vulnerable economic 
sector. The statistical analysis revealed that the 
dominant climate hazards affecting agricultural 
areas are droughts (786,000 km2), followed by 
extreme temperature (651,000 km2), extreme 
rainfall (218,000 km2), floods (208,000 km2) and 
sea-level rise (52,000 km2) (Tables 6 and 7).

TABLE 6. Agricultural impacts due to different frequencies of combined hazards.

	 Country	 Agricultural areas affected as a result of the toztal	 Affected area	 Agriculture	
		  number of multiple hazards occurred (km2)		  (km2)*

	  1a	 2a	 3a	 4a and 5a		

Bangladesh	 46,403.5	 24,035.5	 3,226.7	 20.7	 73,686.5	 91,280

Bhutan	 1,008.5	 5	 0	 0	 1,013.5	 5,196

India	 654,288.7	 363,231.5	 10,754	 502.5	 1,028,777	 1,796,700

Nepal	 21,698.7	 631.7	 11.5	 0	 22,342	 41,266

Pakistan	 123,990.7	 82,237.5	 14,119	 358.7	 220,706	 359,360

Sri Lanka	 7,308.2	 4,361.5	 268	 8.2	 11,946	 27,300

Notes:	a The frequency mentioned in this table refers to the number of occurrences of any type of climate hazard.
	 * Data from the statistical online database of the Food and Agriculture Organization of the United Nations (FAO).
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At the country level, agricultural losses as a 
result of individual climate hazards are highest 
in India, followed by Pakistan, Bangladesh, 
Nepal, Sri Lanka and Bhutan. With regard to 
agricultural losses in India, drought has had 

Overall Climate Change Vulnerability Map

To obtain the overall index of climate change 
vulnerability, we normalized each of the indicators of 
exposure (multiple hazard risks), sensitivity (human 
population and agriculture) and adaptive capacity 
(HDI). To identify the vulnerable areas, we ranked 
the regions according to the HDI and divided the 
list into three grouped datasets. Those states/
districts falling in the fourth quartile were considered 
the vulnerable areas and further classified as low 
to high vulnerability areas. We used two different 
methods of ranking the areas: (i) across the whole 
of South Asia, and (ii) within each of the individual 
countries. This was done simply to rank priority 
areas for adaptation interventions by different users 
of this mapping information. Figure 20 shows the 
district map of multi-hazard areas in South Asia as 
a function of agricultural and population exposure.

Using the method outlined above to derive a 
climate change vulnerability map, we identified the 
most vulnerable areas in South Asia (Figure 21). 
The areas with high quartile include most regions 
of Bangladesh, northwestern India, north and east 
of Pakistan, and regions to the west and east 
of Sri Lanka (Table 8). Unlike other countries in 
South Asia, India is not only exposed to floods 
(particularly in the Ganges River Basin and western 

parts of the country) and droughts, but is also 
exposed to many other climate-related hazards, 
including extreme temperature (northwestern and 
south India), extreme rainfall (Northeast, Western 
Ghats and Central India) and sea-level rise. 
Table 8 lists the climate-hazard hot spots and the 
dominant hazards likely to affect these areas.

Figure 21 shows the most vulnerable regions 
within countries, i.e., those in the top quartile 
relative to other areas within each country. The 
availability of HDI data varies across South Asia. 
HDI information at district level is only available 
for Bhutan and Sri Lanka. Therefore, current risk 
analysis is limited to subregional level. Using 
a scatter plot (Figure 22), with the datasets 
described above, four categories (low, medium, 
high and extreme risk) were identified (Table 9). 
Using the ranking procedure, we found that most 
of the divisions in Bangladesh; the Indian states 
of Andhra Pradesh, Bihar, Maharashtra, Karnataka 
and Orissa; Ampara, Puttalam, Trincomalee, 
Mannar and Batticaloa in Sri Lanka; Sindh and 
Balochistan in Pakistan; and Central and East 
Nepal are extreme-risk areas. The low-risk 
areas are regions in Bhutan, because there are 
fewer climate hazards and those that occur have 
minimal impact on population and agriculture due 
to high HDI values.

TABLE 7. Impact of individual hazards on agriculture.

	 Country	 Agricultural areas affected due to different types of climate hazard (km2)	
	 Floods	 Droughts 	 Extreme	 Extreme	 Sea-level	 Agriculture	
			   rainfall	 temperature	 rise	 (km2)*

Bangladesh	 48,471.20	 2,666.80	 38,902.10	 1,643.40	 16,794.40	 91,280

Bhutan	 8.1	 4.5	 1,038.60	 0	 0	 5,196

India	 126,153.10	 594,805.50	 155,932.80	 523,268	 30,203.90	 1,796,700

Nepal	 2,456.50	 1,093.60	 21,049.20	 143.3	 0	 41,266

Pakistan	 30,015.30	 181,265.40	 1,055.90	 118,847.90	 4,893.30	 359,360

Sri Lanka	 1,171.90	 6,828.40	 972.3	 7,376.50	 571.2	 27,300

Total 	 208,276.10	 786,664.20	 218,950.90	 651,279.10	 52,462.80

Notes:	* Data from the statistical online database of FAO.

the most widespread impact (affecting 594,000 
km2), followed by extreme temperature (523,000 
km2), extreme rainfall (155,000 km2), floods 
(126,000 km2) and sea-level rise (30,000 km2) 
(Table 7).
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In general, the results provide no surprises, 
as they confirm commonly held suspicions that the 
most vulnerable regions of South Asia include the 
coastal region of Bangladesh, the Indian states 
of West Bengal, Orissa, Andhra Pradesh and 
Gujarat, and Sindh in Pakistan. The vulnerability 
of these regions is linked to their exposure to 
sea-level rise, and their positions in relation to 
the transboundary river basins of the Ganges, 

FIGURE 21. Climate change vulnerability map of South Asia based on exposure, sensitivity and adaptive capacity to 
multiple hazards.

Brahmaputra and Meghna (GBM), which are 
prone to annual flooding. It is surprising to see 
that most regions of Bhutan, by comparison, are 
not fully exposed to climate hazards; however, 
their low level of vulnerability reflects their high 
adaptive capacity (high HDI values). Exceptions 
are the districts of Geylegphug, Samchi and 
Chhukha, which suffer from flooding and extreme 
rainfall.

TABLE 8. The climate-hazard hot spots and the dominant hazards likely to affect these areas.

Climate-hazard hot spots	 Dominant hazards

Northwestern India	 Droughts and heat waves

Eastern coastal areas of India	 Sea-level rise, floods

Northeastern region	 Extreme rainfall and floods

Bangladesh	 Floods, sea-level rise, extreme rainfall, droughts

Pakistan	 Floods, droughts, heat waves

Central India	 Droughts, heat waves, extreme rainfall

Western and eastern area of Sri Lanka	 Floods, droughts, sea-level rise, extreme rainfall

Terai region of Nepal	 Floods, droughts and extreme rainfall
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Adaptive capacity seems to have a large 
influence on the spatial pattern of vulnerability. 
The low adaptive capacity of Bangladesh means it 
has some of the most vulnerable regions that are 
highly exposed to climate hazards. On the other 
hand, the high adaptive capacity of the North, 
North-central, Central, Uva and Southern provinces 
in Sri Lanka, which are susceptible to droughts, 
floods and extreme temperature, has enabled 
these areas to moderate their vulnerability. As 
a result, they are not included among the most 
vulnerable areas of South Asia. However, this 
does not apply as a general rule, as there are 
other areas where high adaptive capacity does 
not help to moderate exposure to climate risks. 

TABLE 9. Three parameters (hazard, exposure and adaptive capacity) are used to rank low- to extreme-risks areas 
for South Asia.

Risk/Parameters	 Low	 Medium	 High	 Extreme

Hazards (floods,	 	 	 	 	 	 	
droughts, extreme	 Low	 Moderate	 High	 Very high			 
rainfall, heat waves,							     
sea-level rise)	
Exposure (population							     
exposure and							     
agricultural losses)
Adaptive capacity	 High	 Moderate	 Low	 Very low			 
(Human Development							     
Index)
Countries/States	 Bhutan; Sri	 Bhutan: Geylegphug,	 India: Rajasthan, Madhya	 Most of Bangladesh; India:	
	 Lanka: districts	 Samchi and Chhukha;	 Pradesh, Chhattisgarh,	 Andhra Pradesh, Bihar,	
	 of Nuwara Eliya	 India: Meghalaya, Nagalard,	 Jharkhand, Assam, Punjab	 Maharashtra, Karnataka and	
	 and Matara	 Mizoram, Jammu and	 and Haryana;	 Orissa; Sri Lanka:		
		  Kashmir; Pakistan:	 Pakistan: Punjab, Khyber	 Ampara, Puttalam,		
		  Gilgit-Baltistan; Sri Lanka:	 Pakhtunkhwa, FATA;	 Trincomalee, Mannar and	
		  Kandy, Badulla and Kegalle	 Sri Lanka: Anuradhapura,	 Batticaloa; Pakistan: Sindh	
			   Kurunegala and Polonnaruwa;	 and Balochistan; Central and	
			   Nepal: West, Far-western,	 East Nepal		
			   Mid-western, Western				  
			   Mountains

Mumbai, Dhaka, Kolkata and Karachi are good 
examples of regions that are highly affected by 
frequent floods in spite of their high adaptive 
capacity. This is because the adaptive capacities 
of those cities are not sufficient to moderate their 
extreme vulnerability, which is brought about by 
their high population densities and significant 
exposure to climate hazards (in particular, floods 
and sea-level rise). The current study has not 
included other hazards, such as landslides, to 
which many of these provinces are also highly 
vulnerable. Glacial lake outburst floods, cyclones, 
wildfires and other hazards have also been 
excluded from this study; including them would 
result in changes to vulnerability patterns.

Conclusions

This study presents a detailed and coherent 
approach to mapping climate hazards and 
identifying risk areas in South Asia, which, for the 

first time, combines the following unique features: 
(a) consistent methodology across the study of 
different climate-related hazards, (b) assessment 
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of total population affected and agricultural 
losses, (c) regional-level spatial coverage, and (d) 
application of customized tools using the ArcGIS 
toolbox. This toolbox facilitates the assessment of 
changes in exposure to hazards over time, and 
can be easily updated when a newly released 
or superior dataset becomes available. This 
enables comparison of climate-related hazards 
among the most vulnerable regions in South Asia, 
which can be considered to have the most urgent 
policy needs.

The methodology and analysis introduced 
in this paper enabled us to estimate exposure 
to a range of climate-related hazard events, 
including floods, droughts, extreme rainfall, 
extreme temperature and sea-level rise. A multi-
hazard parameter was devised to sum up the 
total exposure to these five hazard events, with 
a focus on population exposure (the relative 
hazard frequency in a given area weighted 
by population count). This approach enables 
population exposure to be calculated for diverse 
climate-related outcomes (e.g., mortality due 
to hazards, as previous studies have done, or 
population at risk from loss of drinking water or 
agricultural productivity). Further, the hazard and 
exposure were compared across countries against 
HDI classes. Exposure to floods and droughts 

were highest in countries with a high HDI value; 
they also disproportionately affected countries 
with low and medium HDI values. Exposure to 
sea-level rise was highest in countries with a 
high HDI, whereas exposure to droughts was 
highest in those with a low HDI, mainly in India 
and Pakistan.

We gathered a wide range of remote sensing 
data and products, as well as socioeconomic 
data at provincial and district levels, from various 
sources, and integrated these details in a 
consistent and meaningful manner to produce 
a map indicating the areas most vulnerable to 
climate change. This assessment of exposure 
to climate hazards has implications for country-
level adaptation to climate change. It could be 
used to help inform decisions about financial aid 
or how to allocate adaptation resources within a 
country, for example. Additionally, the assessment 
allows comparisons to be made between different 
countries’ exposure to a particular hazard. 
The model is designed to be flexible, allowing 
exposure assessment methods to be applied to 
a range of outcomes and adaptation measures, 
such as mortality, economic loss, costs of repair 
to water infrastructure, sanitation risks, or other 
outcomes that may occur due to the climate-
related hazards outlined.
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