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Key messages 

While we generally have a fundamental understanding of the dominant hydrological 
processes in the Blue Nile Basin, efforts to model it are largely based on temperate climate 
hydrology. Hydrology in the Blue Nile Basin is driven by monsoonal climate, characterized 
by prolonged wet and dry phases, where run-otf increases as the rainy season (which is also 
the growing season) progresses. In temperate climates, run-off typically decreases during the 
growing season as plants remove soil moisture. In the Blue Nile Basin there is a threshold 
precipitation level needed to satisfY soil-moisture capacity (approximately 500 mm) before 
the basin begins to generate run-off and flow. 

• 	 Not all areas of the basin contribute equally to Blue Nile flow. Once the threshold mois
ture content is reached, run-off generation first occurs from localized areas of the landscape 
that become saturated or are heavily degraded. These saturated areas are often found at the 
bottom oflarge slopes, or in areas with a large upslope-contributing area, or soils with a low 
available soil moisture storage capacity. As the monsoonal season progresses, other areas of 
the basin with greater soil moisture storage capacity begin to contribute to run-off. By the 
end of the monsoun, more than 50 per cent of the precipitation can end up as run-off. This 
phenomenon is termed 'saturation excess run-off' and has important implications for iden
tifYing and locating management practices to reduce run-off losses. 

• 	 The Soil and Water Assessment Tool (SWAT) model is modified to incorporate these run
off dynamics. by adding a landscape-level water balance. The water balance version of SWAT 
(SWAT-WB) calculates the water deficit (e.g. available soil moisture storage capacity) for the 
soil profile for each day, and run-off is generated once this water deficit is satisfied. We show 
that this conceptualization better describes hydrological processes in the Blue Nile Basin. 

• 	 Models that include saturation excess (such as our adaptation to the SWAT model) are not 
only able to simulate the flow well but also good in predicting the distribution of run-off 
in the landscape. The latter is extremely important when implementing soil and water 
conservation practices to control run-off and erosion in the Blue Nile Basin. The SWAT
WB model shows that these practices will be most effective if located in areas with 
convergent topography. 
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Hydrological processes in the Blue Nile 

Overview 

This chapter provides an analysis of the complexity of hydrological processes using detailed 
studies at scales from the micro-watershed to the Blue Nile Basin (BNB). Data collected from 
various sources include long-term Soil Conservation Reserve Program (SCRP) data (Hurni, 
1984), and consist of both hydrological data in the form of streamflow and stream sediment 
concentrations and loads. Data collected by students in the SCRP watersheds include piezo
metric water table data and plot studies of run-off dynamics. Governmental and 
non-governmental sources provided meteorological data, as well as data on land use, elevation 
and soil inputs for modelling analysis. In the small SCRP watersheds, the analysis focused on 
piezometric water table data and run-off losses as they relate to the topographic position in the 
watershed. In parallel, basin-scale models were used to enhance understanding of rainfall run
off and erosion processes and the impact of management interventions on these processes in 
theBNB. 

Introduction 

A better understanding of the hydrological processes in the headwaters of the BNB is of 
considerable importance because of the trans-boundary nature of the BNB water resources. 
Ethiopia has abundant, yet underutilized, water resource potential, and 3.7 million ha ofpoten
tially irrigable land that can be used to improve agricultural production (MoWR, 2002; 
Awulachew et aI., 2007).Yet only 5 per cent ofEthiopia's surface water (0.6% of the Nile Basin's 
water resource) is being currently utilized by Ethiopia (Arseno and Tamrat, 2005). Sudan 
receives most of the flow leaving the Ethiopian Highlands, and has considerable infrastructure 
in the form of reservoirs and irrigation schemes that utilize these flows. Ethiopian Highlands 
ate the source of more than 60 per cent of the Nile flow (Ibrahim, 1984; Conway and Hulme, 
1993). This proportion increases to almost 95 per cent during the rainy season (Ibrahim, 1984). 
However, agricultural productivity in Ethiopia lags behind other similar regions, which is 
attributed to unsustainable environmental degradation mainly from erosion and loss of soil 
fertility (Grunwald and Norton, 2000). In addition, there is a growing concern about how 
climate and human-induced degradation will impact the BNE water resources (Sutcliffe and 
Parks, 1999), particularly in light of limited hydrological and climatic studies in the basin 
(Arseno and Tamrat, 2005). 

One characteristic of Ethiopian BNB hill slopes is that most have infiltration rates in excess 
of the rainfall intensity. Consequently, most run-off is produced when the soil saturates 
(Ashagre, 20(9) or from shallow, degraded soils. Engda (2009) showed that the probability of 
rainfall intensity exceeding the measured soil infiltration rate is 8 per cent. This is not to imply 
that infiltration excess, or Hortoman flow (Horton, 1940), is not present in the basin, but that 
it is not the dominant hydrological process. Indeed, Steenhuis et al. (2009) and Collick et al. 

(2009) not only note the occurrence of infiltration excess run-off but also state that it is 
predominantly found in areas with exposed bedrock or in extremely shallow and degraded 
soils. Most of the models utilized to assess the hydrological response of basins such as the BNB 
are arguably incorrect (or at the very least incomplete) in their ability to adequately simulate 
the complex interrelations of climate, hydrology and human impacts. This is not because the 
models are poorly constructed but often because they were developed and tested in very differ
ent climates, locations and hydrological regimes. Indeed, most hydrological models have been 
developed in, and tested for, conditions typical of the United States or Europe (e.g. temperate 
climate, with an even distribution of rainfall), and thus lack the fundamental understanding of 
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how regions dominated by monsoonal conditions (such as the BNB) function hydrologically. 
Thus, a paradigm shift is needed on how the hydrological community conceptualizes hydro
logical processes in these data-scarce regions. 

In monsoonal climates a given rainfall volume at the onset of the monsoon produces a 
difTerent run-off volume than the same rainfall at the end of the monsoon (Lui et ai., 2(08). 
Lui et al. (2008) and Steenhuis et al. (2009) showed that the ratio of discharge to precipitation 
minus evapotranspiration (Q/(P ET)) increases with cumulative precipitation from the ollSet 
of the monsoon and, consequently, the watersheds behave differently depending on the amount 
of stored moisture, suggesting that saturation excess processes play an important role in the 
watershed run-off response. Other studies in the BNB or nearby catchments have suggested 
that saturation excess processes control overland flow generation (Collick et ai., 2009; Ashagre, 
2009; 2009;Tebebu, 2009; Easton et ai., 201O;Tebebu et al., 201 O;White et al., 2011) and 
that inflitration-excess run-off is rare (Liu et al., 2008; Engda, 2009). 

Many of the commonly used watershed models employ some form of the Soil Conservation 
Service curve number to predict run-off, which links run-off response to soils, land use and 
rlve-day antecedent rainfall (AMC), and not the cumulative seasonal rainfall volume. The Soil 
and Water Assessment Tool (SWAT) model is a basin-scale model where run-off is based on 
land use and soil type (Arnold ft ai., 1998), and not on topography. As a result, run-off and sedi
ment transport on the landscape are only correctly predicted for infiltration excess of overland 
flow, and not when saturation excess of overland flow from variable source areas (VSA) domi
nates. Thus. critical landscape sediment murce areas might not be explicitly recognized. 

The analysis in this chapter utilizes existing data sets to describe the hydrological character
istics of the BNB with regard to climatic conditions, rainfall characteristics and run-off process 
across various spatial scales in the BNn. An attempt is made to explain the processes governing 
the generation of run-otT at various scales in the basin, from the small watershed to the basin 
level and to quantitY the water resources at these scales. Models used to predict the source, 
timing and magnitude of rull-off in the basin are reviewed, the suitability and limitations of 
existing models are described, and approaches and results of derived models are 
presented. 

Much of the theory of run-otT production that follows is based on, and corroborated by, 
studies carried out in the SCRP watersheds. These micro-watersheds are located in headwater 
catchments in the basin and typifY the landscape features of much of the highlands, and are thus 
somewhat hydrologically representative of the basin. A discussion of the findings from these 
SCRP micro-watershcJs is fi)llowed by work done in successively larger basins (e.g. watershed, 
sub-basin and basin) and, finally, by an attempt to integrate these works using models across the 
various scales. 

Rainfall run-off processes 

Micro-watershed hydrological processes 

SCRP watersheds have the longest and most accurate record of both rainfall and run-off data 
available in Ethiopia. Three of the sites are located in the Amhara' region either in or close to 

the Nile Basin: Andit Tid. Anjeni and Maybar (SCRP, 20(0). All three sites are dominated by 
agriculture, with control structures built for soil erosion to assist the rain-fed subsistence farm
ing (Table 6.1). 
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Hydrological processes in the Blue Nile 

TaMe 6.1 Location, description and data span from the three seRP research sites 

Site H.atersfled centroid Area Elevation range Precipitation Lmglh of record 
(region) (ha) (mas!) (mm yr) 

AnditTid 39°43' E, 9°48' N 477.3 3040-3548 1467 1987-2{)04 

(Shewa) (1993, 1995-1996 
incomplete) 

Anjeni 37°31' E, 10°40' N 113.4 2407-2507 1675 1988-1997 

(Gojam) 

Maybar 37°31' E, 10°40' N 112.8 2530-2858 1417 1988-2001 
(South Wollo) (1990-1993 

incomplete) 

The Andit Tid Research Unit covers a total area of 481 ha with an elevation of 3040-3548 m, 
with steep and degraded hill slopes (Bosshart, 1997), resulting in 54 per cent of the long-term 
precipitation becoming run-off (Engda, 2(09). Conservation practices including terraces, 
contour drainage ditches and stone bunding have been installed to promote infiltration and 
reduce soil loss. In addition to long-term rainfall run-off and meteorological measurements, 
plot-scale measures of soil infIltration rate at 10 different locations throughout the watershed 
were taken and geo-referenced with a geographic positioning system (GPS). Soil infiltration 
was measured using a single-ring infiltrometer of 30 cm diameter. 

The Anjeni watershed is located in the Amhara Region of the BNB. The Anjeni Research 
Unit covers a total area of 113 ha and is the most densely populated of the three SCRP water
sheds, with elevations from 2400 to 2500 m. The watershed has extensive soil and water 
conservation measures, mainly terraces and small contour drainage ditches. From 1987 to 2004 
rainfall was measured at five different locations, and discharge was recorded at the outlet and 
from four run-otT plots. Of the rainfall, 45 per cent becomes run-off. During the 2008 rainy 
season the soil infiltration rate was measured at ten different locations throughout the water
shed using a single-ring infiltrometer 0£30 cm diameter. In addition, piezometers were installed 
in transects to measure the water table depths. 

The 112.8 ha Maybar catchment was the first of the SCRP research sites, characterized by 
rugged topography with slopes ranging between 2530 and 2860 m. Rainfall and How data were 
available from 1988 to 2004. Discharge was measured with a flume installed in the Kori River 
using two methods: float-actuated recorder and manual recording. The groundwater table levels 
were measured with 29 piezometers located throughout the watershed. The saturated area in 
the watershed was delineated and mapped using a combination of information collected using 
a GPS, coupled with field observation and groundwater-level data. 

Analysis of rainfall discharge data in SCRP watersheds 

To investigate run-off response patterns, discharges in the Anjeni, Andit Tid and Maybar catch
ments were plotted as a function of effective rainfall (i.e. precipitation minus 
evapotranspiration, P - during the rainy and dry seasons. In Figure 6.1a an example is given 
for the Anjeni catchment. As is clear from this figure, the watershed behaviour changes as the 
wet season progresses, with precipitation later in the season generally producing a greattr 
percentage of run-off. As rainfall continues to accumulate during the rainy season, the 
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watershed eventually reaches a threshold point where run-off response can be predicted by a 
linear relationship with effective precipitation, indicating that the proportion of the rainfall that 
became run-off was constant during the remainder of the rainy season. For the purpose of this 
study, an approximate threshold of 500 mm of effective cumulative rainfall (P E) was deter
mined after iteratively examining rainfall/run-off plots for each watershed. The proportion 
Q/(P - E) varies within a relatively small range for the three seRP watersheds, despite their 
different characteristics. In Anjeni, approximately 48 per cent of late season effective rainfall 
became run-otf, while ratios for Andit Tid and Maybar were 56 and 50 per cent, respectively 
(Liu et al., 2008). There was no correlation between biweekly rainfall and discharge during the 
dry seasons at any of the sites. 

Despite the great distances between the watersheds and the different characteristics, the 
response was surprisingly similar. The Anjeni and Maybar watersheds had almost the same run
off characteristics, while Andit Tid had more variation in the run-off amounts but, on average, 
the same linear response with a higher intercept (Figure 6.1b). Linear regressions were gener
ated for all three watersheds (Figures 6.1). The regression slope does not change significantly, 
but this is due to the more similar values in Anjeni and Maybar dominating the fit (note that 
these regressions are only valid for the end of rainy seasons when the watersheds are wet). 

Why these watersheds behave so similarly after the threshold rainfall has fallen is an inter
esting characteristic to explore. It is imperative to look at various time scales, since focusing 
on just one type of visual analysis can lead to erroneous conclusions. For example, looking 
only at storm hydrographs of the rapid run-off responses prevalent in Ethiopian storms, one 
could conclude that infiltration excess is the primary mechanism generating run-off. 
However, looking at longer time scales it can be seen that the ratio of Q/(P E) is increas
ing with cumulative precipitation and, consequently, the watersheds behave differently 
depending on how much moisture is stored in the watershed, suggesting that saturation excess 
processes play an important role in the watershed run-off response. If infiltration excess was 
controlling run-off responses, discharge would only depend on the rate of rainfall, and there 
would be no clear relationship with antecedent cumulative precipitation, as is clearly the case 
as shown in Figure 6.1. 

Infiltration and precipitation intensity measurements 

To further investigate the hydrological response in the seRP watersheds, the infiltration rates 
are compared with rainfall intensities in the Maybar (Figure 6.2a) and Andit Tid (Figure 6.2b) 
watersheds, where infiltration rates were measured in 2008 by Bayabil (2009) and Engda 
(2009), and rainfall intensity records were available from the seRP project for the period 
1986-2004. In AnditTid, the exceedance probability of the average intensities of 23,764 storm 
events is plotted in Figure 6.2b (blue line). These intensities were calculated by dividing the 
rainfall amount on each day by the duration of the storm. In addition, the exceedance proba
bility for instantaneous intensities tor short periods was plotted as shown in Figure 6.2b (red 
line). Since there are often short durations of high-intensity rainfall within each storm, the rain
fall intensities for short periods exceeded those of the storm-averaged intensities as shown in 
Figure 6.2b. 

The infiltration rates for 10 locations in Andit Tid measured with the diameter single-ring 
infiltrometer varied between a maximum of 87 cm hr' on a terraced eutric cambisol in the 
bottom of the watershed to a low of 2.5 em hr' on a shallow sandy soil near the top of the 
hill slope. This low infiltration rate was mainly caused by the compaction of freely roaming 
animals for grazing. Bushlands, which are dominant on the upper watershed, have significantly 
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median intensity has an exceedance probability of 0.03 for tbe actual storm intensities and 
0.006 for the storm-averaged intensities. Thus the median intensity was exceeded only 3 per 
cent of the time and for less than 1 per cent of the storms. Storms with greater intensities were 
all of short duration with amounts of less than 1 em of total precipitation except once when 
almost 4 em of rain fell over a 40-minute period. The run-off generated during short-duration 
intense rainfall can infIltrate into the soil in the subsequent period in the soil down slope when 
the rainfall intensity is less or the rain has stopped. 

A similar analysis was performed in the Maybar watershed (Derib, 2005), where 16 inflltra
cion rates were measured and even greater infIltration rates than in Andit Tid were found. The 
final steady state infIltration rates ranged from 1.9 to 60 em hI', with a median of 17.5 em hr" 
(Figure 6.2.1). The steady state infiltration rates in the Maybar watershed (Derib, 2005) ranged 
from 19 to 600 nun hr'.The average steady state infiltration rate of all 16 measurements was 
24 em h-' and the median was 18 em hr-'. The median steady state inflltration rate (or geomet
ric mean) was 18 em hr-'. The average daily rainfall intensity for seven years (from 1996 to 
2004) was 8.5 mm hr-I.A comparison of the geometric mean infIltration rate with the proba
bility that a rainfall intensity of the same or greater ma!:,rnitude occurs showed that the median 
steady state inflltration rate is not exceeded, while the minimum infiltration rate is exceeded 
only 9 per cent of the time. Thus, despite the rapid observed increase in flow at the outlet of 
the watershed during a rainstorm, it is unlikely that high rainfall intensities caused inftltration 
excess run-off, and more likely that saturated areas contributed the majority of the flow. Locally, 
there can be exceptions. For example, when the infiltration rate is reduced or in areas with 
severe degradation, livestock traffic can cause inflltration excess run-off (Nyssen et al., 2010). 

Thus, the probability of exceedence is approximately the same as in Andit Tid, despite the 
higher rainfall intensities. 

These infiltration measurements confIrm that infiltration excess run-off is not a common 
feature in these watersheds. Consequently, most run-off that occurs in these watersheds is from 
degraded soils where the topsoil is removed or by saturation excess in areas where the upslope 
interflow accumulates. The flnding that saturation excess is occurring in watersheds with a 
monsoonal climate is not unique. For example, Bekele and Horlacher (2000), Lange et al. 

(2003), Hu et aT. (2005) and Merz et al. (2006) found that saturation excess could describe the 
flow in a monsoonal climate in southern Ethiopia, Spain, China and Nepal, respectively. 

Piezometers and groundwater table measurements 

In 1ll three SCRP watersheds, transects of piezometers were installed to observe groundwater 
table in 2008 during the rainy reason and the beginning of the dry season. 

Both Andit Tid and Maybar had hill slopes with shallow- to medium-depth soils (0.5-2.0 
m depth) above a slow sloping permeable layer (either a hardpan or bedrock). Consequently, 
the water table height above the slowly permeable horizon (as indicated by the piezometers) 
behaved similarly for both watersheds. An example is given for the Maybar watershed, where 
groundwater table levels were measured with 29 piezometers across eight transects (Figure 6.3). 
The whole watershed was divided into three slope ranges: upper steep slope (25.1-53.0°), mid
slope (14.0-25.0°) and relatively low-lying a~eas (0-14.0°). For each slope class the daily 
perched groundwater depths were averaged (i.e. the height of the saturated layer above the 
restricting layer). The depth of the perched groundwater above the restricting layer in the steep 
and upper parts of the watershed is very small and disappears if there is no rain for a few days. 
The depth of the perched water table on the mid-slopes is greater than that of the upslope 
areas. The perched groundwater depths are, as expected, the greatest in relatively low-lying 
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areas. Springs occur at the locations where the depth from the surface to the impermeable layer 
is the same as the depth of the perched water table and are the areas where the surface run-off 
is generated. 

The behaviour of water table is consistent with what one would expect if interflow is the 
dominant conveyance mechanism. Ceteris paribus, the greater the driving force (i.e. the slope of 
the impermeable layer), the smaller the perched groundwater depth needed to transport the 
same water because the lateral hydraulic conductivity is larger. Moreover, the drainage area and 
the discharge increase with the downslope position. Consequently, one expects the perched 
groundwater table depth to increase with the downslope position as both slopes decrease and 
drainage area increases. 

These findings are different from those generally believed to be the case that the vegeta
tion determines the amount of run-off in the watershed. Plotting the average daily depth of 
the perched water table under the different crop types (Figure 6.3a) revealed a strong correla
tion between perched water depth and crop type. The grassland had the greatest perched water 
table depth, followed by croplands, while bushlands had the lowest groundwater level. However, 
some local knowledge was needed to interpret these data. For instance, the grasslands are 
mainly located in the often-saturated lower-lying areas (too wet to grow a crop), while the 
croplands are often located in the mid-slope (with a consistent water supply but not saturated) 
and the bushlands are found on the upper steep slope areas (too droughty for good yield), Since 
land use is related to slope class (Figure 6.3b), the same relationship between crop type and soil 
water t4ble height is not expected to be seen as between slope class and water table height. Thus 
there is an indirect relationship between land use and hydrology. The landscape determines the 
water availability, and thus the land use. 

In the Anjeni watershed, which had relatively deep soils and no flat-bottom land, the only 
water table found was near the stream. The water table level was above the stream level, indi
cating that the rainfall infiltrates first in the landscape and then flows laterally to the stream. 
Although more measurements are needed it seems reasonable to speculate that there was a 

Figure 6.3 A 
portion of the watershed that had a hardpan at a shallow depth with a greater percolation rate 
than in either Andit Tid or Maybar allowing recharge but, at the same time, causing interflow sl 
and saturation excess overland flow. 

Perhaps the most interesting interplay between soil water dynamics and run-ofF source areas 
can be observed in the Maybar catchment. For instance, transect 1 illustrates a typical water 
table response across slope classes in the catchment. This and other transects have a slow perme
able layer (either a hardpan or bedrock) and the water tends to pond above this layer. with the s( 

At the beginning or August (the middle of the rainy season) the water table at the most land flow. I 
down-slope location, PI, increased and reached the surface of the soil on 17 August (Figure becomes n 
6.4). On a few dates, it was located even above the surface indicating surface run-off at the water frorr 
time. The water table started declining at the end of September, when precipitation ceased. responsible 
The water level in P2, located upslope ofP1, reached its maximum on 29 August, and the level These f 
remained below the surface. It decreased around the beginning of September, when rainfall watershed 
storms were less frequent (Figure 6.4). The water table in P3 responded quickly and decreased ted against 
rapidly. Thus, unlike PI and P2, the water did not accumulate there and flowed rapidly as perched w 
interflow downslope. Finally, the response time in the most upstn;am piezometer, P4, was est perche 
probably around the duration of the rainstorm and was !lot recorded by our manual meas groundwat 
urernents. graphical f 

Thus, the piezometric data in this and other transects indicate that the rainfall infiltrates on related to 
the hillsides and flows laterally as interflow down slope. At the bottom of the hillside where the slope class 
slope decreases, the water accumulates and the water table increases. When the water intersects land use al 
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Figure 6.3 Average daily water level for three land uses (i.e. grasslands, croplands and woodlands) 
calculated above the impermeable layer superimposed (a) with daily rainfall and (b) for three 
slope classes in the Maybar catchment 

with the soil surface, a saturated area is created. Rainfall on this saturated area becomes over
land flow. In addition, rainfall at locations where the water table remains steady, such as P2, also 
becomes mn-off; otherwise it would rise to the surface. Natural soil pipes that rapidly convey 
water from the profile and that have been seen in many places in iliis watershed might be 
responsible for this process (Bayabil,2009). 

These findings indicate that topographic controls are important to consider when assessing 
watershed response. However, when the average daily depth of the perched water table is plot
ted against the different crop types (e.g. Figure 6.3a), there was also a strong correlation of 
perched water depth with crop type. The grasslands at the bottom of the slope had the great
est perched water table depth, followed by, croplands and woodlands with the lowest 
groundwater leveL Thus, it seems that similar to the plot data, both ecological factors and topo
graphical factors playa role in determining the perched water table height. Since land use is 
related to slope class, the same relationship between crop type and soil water table height as 
slope class and water table height is expected. Thus, there is an indirect relationship between 
land use and hydrology. The landscape determines the water availability and thus the land use. 
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Fifiurc 6,4 Piezometric water-level data transect 1 in the upper part of the watershed, where the slope is 
even. Water level was measured twice a day during the 2008 main rainy season using the 
ground surface as a reference and rainfall as a daily measurement 

The results of this study are similar to those of the May watershed, which is in a much 
dryer area in Tigrai, with an average annual rainfall ofaround 600 mIll yr- I (Nyssen et ai., 2(10). 
In this study, the water table in the valley bottom was measured with a single piezometer. 
Nyssen et al. (2010) observed that increasing infiltration on the hillside resulted in a faster 
increase in water tables in the valley bottom, which is similar to what was observed in the 
Maybar catchment where water moved via the subsurface, which increased the water levels 
where the slope decreased. 

Thus, although there is a relationship between run-otI potential and crop type, the rela
tionship is indirect. The saturated areas are too wet for a crop to survive and these areas are 
often left as grass, The middle slopes have sufficient moisture (and do not saturate) to survive 
the dry spells in the rainy season. The steep slopes, without any water table, are likely to be 
droughty for a crop to survive during dry years and are therefore mainly forest or shrub. 

These findings are consistent with the measurements taken by McHugh (2006) in the 
Lenche Dima watershed near Woldea, where the surface run-otf of the valley bottom lands 
were much greater than the run-off (and erosion) from the hillsides. 

Run-offfrom test plots 

The rainfall run-off data collected from run-otf plots in the May~ar watershed for the years 
1988, 1992 and 1994 allow further identification of the dominant run-off processes in 
the watershed. The average annual run-off measured on four plots showed that plots with shal
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lower slopes had higher run-off losses than those with steeper slopes (Figure 6.5a). The run-off Figure 6.5 Pl 
coefficients ranged from (}'06 to 0,15 across the slope classes (Figure 6.5a), Nyssen et al. (2010) cia 
compiled the data of many small run-off plots in Ethiopia and showed an even larger range of cl: 
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run-off coefficients across slope classes. Run-off from plots in the Andit Tid catchment showed 
a very similar slope response (Figure 6.Sb) as the Maybar plots, with shallower slopes produc
ing more run-off. These results indicate that the landscape position plays an important role in 
the magnitude of the run-off coefficients as well. Indeed, it is commonly accepted that, ceteris 
paribus, a greater slope causes an increase in the lateral hydraulic conductivity of the soils, and 
thus these soils maintain a greater transmissivity than shallower slopes, and are able to conduct 
water out of the profile faster, reducing run-off losses. 

Figure 6.5 Plot run-off coefficient computed from daily 1988,1989,1992 and 1994 rainfall and run-off 
data for different slopes in (a) the Maybar catchment and (b) run-off depths for various slope 
classes in the Andit Tid catchment 
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Discussion 

Both the location of run-off source areas and the effectiveness of a soil and water conservation 
practice depend on the dominating run-off processes in the watershed. Whether \>latershed 
run-off processes are ecologically (plant) or topographically controlled is an important consid
eration when selecting appropriate practices. Inherent in the assumption of ecologically based 
run-off is the concept of soil infiltration excess type of overland flow in which run-off occurs 
when rainfall intensity exceeds the infiltration capacity of the soil. Thus, for ecologically based 
models, improving plant cover and soil health wil1, in general, reduce overland flow and increase 
infiltration and intertlow. On the other hand, topographically based run-off processes are, in 
general, based on the principle that if the soil saturates either above a slow permeable layer or 
a groundwater table, run-off occurs. In this case, changing plant cover will have little effect on 
run-off unless the conductivity of the most restricting layer is altered. These areas, which satu
rate easily, are called run-off source areas. They indicate where soil and water conservation 
practices would be most effective because most of the erosion originates in these areas. 
Understanding hydrological processes of a basin as diverse as the BNB is an essential prerequi
site to understand the water resources and to ultimately design \-vater management str;lte~~es 
for water access and improve water use in agriculture and other sectors. The results of various 
studies as brietly demonstrated above provide a wide range of tools and methods of analysis to 
explain such process. These finding will assist water resources and agricultural planners, design
ers and managers with a tool to better manage water resources in Ethiopian Highlands and to 
potentially mitigate impacts on water availability in downstream countries. 

These results from the SCRP watersheds serve as the basis for the adoption of the models 
discussed next. 

Adoption of models to the Blue Nile 

Watershed management depends on the correct identifICation of when and where run-off and 
pollutants are generated. Often, models are utilized to drive management decisions, and foclls 
resources where they are most needed. However, as discussed above, the hydrology and, by able 
extension, biogeochemical processes in basins such as the Blue Nile, dominated by monsoonal oftr 
conditions, often do not behave in a similar manner as watersheds elsewhere in the world. As and 
a result, the models utilized to assess hydrology often do not correctly characterize the 
processes, or require excessive calibration and/or simplifYing assumptions. Thus, watershed exp; 
models that are capable of capturing these complex processes in a dynamic manner can be used area 
to provide an enhanced understanding of the relationship between hydrological processes, (Ha 
erosion/sedimentation and management options. Re 

There are many models that can continuously simulate streamflow, erosion/sedimentation bee 
or nutrient loss from a watershed. However, most were developed in temperate climates and froJ 
were never intended to be applied in monsoonal regions, such as Ethiopia, with an extended aIle 

dry period. In monsoonal climates, a given rainfall volume at the onset of the monsoon me 
produces a drastically different run-off volume than the same rainfall volume at the end of the 
monsoon (Lui et al., 2008). ita' 

Many of the commonly used watershed models employ some form ofthe Soil Conservation in< 
Service curve number (CN) to predict run-off, which links run-off response to soils, land use is 
and five-day antecedent rainfall (e.g. antecedent moisture condition, AMC) , and not the cumu co 
lative seasonal rainfall volume. The SWAT model is a basin-scale model where run-off is based pI 
on land use and soil type (Arnold et al., 1998), and not on topography; therefore, TUn-off and to 
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sediment transport on the landscape are only correctly predicted for soil infiltration excess type 
of overland flow and not when saturation excess of overland flow from variable source areas 
(VSA) dominates. Thus critical sediment source areas might not be explicitly recognized as 
unique source areas. SWAT determines an appropriate CN for each simulated day by using this 
CN-AMC distribution in conjunction with daily soil moisture values determined by the 
model. This daily CN is then used to determine a theoretical storage capacity, S, of the water
shed for each day. While a theoretical storage capacity is assigned and adjusted for antecedent 
moisture for each land use/soil combination, the storage is not used to directly determine the 
amoum of water allowed to enter ilie soil profile. Since this storage is a function of the land's 
infiltration properties, as quantified by the CN-AMC, SWAT indirectly assumes that only infil
tration excess processes govern run-off generation. Prior to any water infiltrating, the exact 
portion of ilie rainfall that will run-otf is calculated via these infiltration properties. This deter
mination of run-off volume before soil water volume is an inappropriate approach for all but 
the most intense rain evems, particularly in monsoonal climates where rainfall is commonlv of 
both low intensity and long duration a~d saturation processes generally govern run-off produc
tion. Several studies in the BNB or nearby watersheds have suggested that saturation excess 
processes control overland flow generation (Liu et al., 2008; Collick et al., 2009; Ashagre, 2009; 
Engda, 2009; Tebebu, 2009; Tebebu et al., 2010; White et al., 2011) and that infiltration excess 
run-off is rare (Liu et al., 2008; Engda, 2009). 

Many have attempted to modify the CN to better work in monsoonal climates, by propos
ing various temporally based values and initial abstractions. For instance, Bryant et ai. (2006) 
suggest iliat a watershed's initial abstraction should vary as a function of storm size. While this 
is a valid argument, the introduction of an additional variable reduces ilie appeal of the one
parameter CN model. Kim and Lee (2008) found that SWAT was more accurate when CN 
values were averaged across each day ofsimulation, rather than using a CN that described mois
ture conditions only at the start of each day. White et al. (2009) showed that SWAT model 
results improved when the CN was changed seasonally to account for watershed storage vari
ation due to plant growth and dormancy. Wang et ai. (2008) improved SWAT results by using 
a different relationship between antecedent conditions and watershed storage. While these vari
able CN methods improve run-off predictions, they are not easily generalized for use outside 
of the \vatershed as they are tested mainly because the CN method is a statistical relationship 
and is not physically based. 

In many regions, surface run-off is produced by only a small portion of a watershed that 
expands with an increasing amount of rainfall. This concept is often referred to as a variable source 
area (VSA), a phenomenon actually envisioned by the original developers of the CN meiliod 
(Hawkins, 1979), but never implemented in the original CN method as used by the Natural 
Resource Conservation Service (NRCS). Since the meiliod's inception, numerous attempts have 
been made to justify its use in modelling VSA-dominated watersheds. These adjustments range 
from simply assigning different CNs for wet and dry portions to correspond with VSAs (Sheridan 
and Shirmohammadi, 1986; White et al., 2009), to full reinterpretations of the original CN 
method (Hawkins, 1979; Steenhuis et al., 1995; Schneiderman et al., 2007; Easton et al., 20(8). 

To determine what portion of a watershed is producing surface run-off for a given precip
itation event, the reinterpretation of the eN method presented by Steenhuis et al. (1995) and 
incorporated into SWAT by Easton d al. (2008) assumes that rainfall infiltrates when the soil 
is unsaturated or runs off when the soil is saturated. It has been shown that this saturated 
contributing area of a watershed can be accurately modelled spatially by linking this reinter
pretation of the CN method with a topographic index (TI), similar to those used by the 
topographically driven TOPMODEL (Beven and Kirkby, 1979; Lyon et ai., 2004). This linked 
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CN-TI method has since been used in multiple models ofwatersheds in the north-eastern US, 
including the Generalized Watershed Loading Function (GWLF; Schneiderman et al., 20(7) 

and SWAT (Easton et al., 2008).While the reconceptualized CN model is applicable in temper
ate US climates, it is limited by the fact that it imposes a distribution of storages throughout 
the watershed that need to fill up before run-off occurs. While this limitation does not seem 
to affect results in temperate climates, it results in poor model results in monsoonal climates. 

SWAT-VSA, the CN-TI adjusted version of SWAT (Easton et aI., 2(08), returned hydro
logical simulations as accurate as the original CN method; however, the spatial predictions of 
run-off-producing areas and, as a result, the predicted phosphorus export were much more 
accurate. While SWAT-VSA is an improvement upon the original method in watersheds, 
where topography drives flows, ultimately, it still relies upon the CN to model run-off processes 
and, therefore, it is limited when applied to the monsoonal Ethiopian Highlands. Water balance 
models are relatively simple to implement and have been used frequently in the BNB Oohnson 
and Curtis, 1994: Conway, 1997; Ayenew and Gebreegziabher, 2006; Liu et al., 2008; Kim and 
Kaluarachchi, 2008; Collick et al., 2009; Steenhuis et al., 2009). Despite their simplicity and 
improved watershed outlet predictions they fail to predict the spatial location of the run-off 
generating areas. Collick et al. (2009) and, to some degree, Steenhuis e/ al. (2009) present semi
lumped conceptualizations of run-off-producing areas in water balance models. SWA'T~ a 
semi-distributed model can predict these run-off source areas in greater detail, assuming the 
run-off processes are correctly modelled. 

Based on the finding discussed above, a modified version of the commonly used SWAT 
model (White et al., 2011; Easton et al., 2010) is developed and tested. This model is designed 
to more effectively model hydrological processes in monsoonal climates such as in Ethiopia. 
This new version of SWA'l~ including water balance (SWAT-WB), calculates run-off volumes 
based on the available storage capacity of a soil and distributes the storages across the water
shed using a soil topographic wetness index (Easton et al., 2008), and can lead to more accurate 
simulation of where run-off occurs in watersheds dominated by saturation-excess processes 
(White et al., 2011).White et al. (2011) compared the performance ofSWAT-WB and the stan
dard SWAT model in the Gumera watershed in the Lake Tana Basin, Ethiopia, and «mnd that 
even following an unconstrained calibration of the CN, the SWA'r model results were 17-23 
per cent worse than the SWAT-WB model results. 

Application ofmodels to the watershed, sub-basin and basin scales 

lenaw (2008) used a standard SWAT model for Ethiopian Highlands to analyse the rainfall
run-off process at various scales in the upper BNB. Gelaw (2008) analysed the Ribb watershed 
using Geographic Information System and analysed the meteorological and data for character
izing the flooding regime and extents of damage in the vliatershed. 

At the sub-basin level, Saliha et al. (2011) compared artificial neural network and the distrib
uted hydrological model WaSiM-ETH (where WaSiM is Water balance Simulation Model) for 
predicting daily run-off over five small to medium-sized sub-catchments in the BNB. Daily 
rainfall and temperature time series in the input layer and daily mn-off time series in the output 
layer of a recurrent neural net with hidden layer feedback architect,ure were formed. As most 
of the watersheds in the basin are ungauaged, Saliha et al. (2011) used a Kohonen neural 
network and WaSiM-ETH to estimate tlow in the ungauged basin. Kohonen neural network 
was used to delineate hydrologically homogeneous and WaSiM-ETH was used to 

generate daily flows. Twenty-five sub-catchments of the BNE in Ethiopia were grouped into 
five hydrologically homogenolls groups. WaSiM was calibrated using automatic nonlinear 
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pardmeter estimation (PEST) method coupled with shullied complex evolution (SeE) algo
rithm and validated using an independent time series. In the coupled programme, the Kohonen 
neural net>vork assigns the ungauged catchment into one of the five hydrologically homoge
neous groups. Each homogeneous group has its own set of optimized WaSiM-ETH parameters, 
derived from simultaneous calibration and validation of gauged rivers in the respective homo
geneous group. The coupled programme transfers the optimized WaSiM parameters from the 
homogeneous group (which the ungauged river belongs to) to the ungauged river, and WaSiM 
calculates the daily flow for this ungauged river. 

The two approaches discussed above, developed by Easton et al. (2010) and Saliha et al. 

(2011), provided a means of estimating run-off in the BNB across a range of scales and loca
tions. Readers are referred to Saliha et ai, (2011) for detail models and results on these and the 
Kohonen neural network and WaSiM-ETH for a detailed discussion. What follows are exam
ples of applications of the SWAT and SWAT-WB at multiple scales in the UNE. 

At the watershed level (Gumera), results of a standard SWAT model (Tenaw, 2008) and 
modified SWAT-WB model (Easton et al., 2010;White et aI., 2(11) are compared.Tenaw (2008) 
initialized the standard SWAT model for the Gumera watershed, which provided good cali
bration results at the monthly time step with a Nash-Sutcliffe efficiency, ENS (Nash and 
Sutcliffe, 1970), ofO,76, correlation coefficient, R', of 0.87, and mean deviation, D, of3.29 per 
cent (Figure 6.6).Validation results also show good agreement between measured and simulated 
values, with ENS of 0.72, R' of 0.82 and D of -5.4 per cent. 
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Figure 6.6 Calibration results of average monthly observed and predicted flow at the Gumera gauge 
using the SWAT 

Source: Tenaw, 20()S 

At the sub-basin level, Habte et al. (2007) assessed the applicability of distributed WaSiM
ETH in estimating daily run-off from 15 sub-catchments in the Abbay River Basin. Input data 
in the form of daily rainfall and temperature data from 38 meteorological stations were used to 
drive model simulations. In a study by Saliha et al. (2011), the artificial neural network and 
distributed hydrological model (WaSiM-ETH) were compared for predicting daily run-off 
over five small to medium-sized sub-catchments in the Blue-Nile River Basin. Daily rainfall 
and temperature time series in the input layer and daily run-off time series in the output layer 
of recurrent neural net with hidden layer feedback architecture were formed. 

The use of neural networks in modelling a complex rainf.ill-run-off relationship can be an 
efficient way ofmodelling the run-offprocess in situations where explicit knowledge of the inter
nal hydrological process is not available. Indeed, most of the watersheds in the basin are ungauged, 
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and thus there is little available data to run standard watershed models. Saliba et al. (2011) 
used a Self-Organizing Map (SOM) or Kohonen neural network (KNN) and WaSiM-ETH to 

estimate flow in the ungauged basin. The SOM groupings were used to delineate hydrologically 
homogeneous regions and WaSiM-ETH was then used to generate daily flows. The 26 sub
catchments of the BNB in Ethiopia were grouped into five hydrologically homogeneous groups, 
andWaSiM-ETH was then calibrated using the PEST method coupled with the SeE algorithm 
in neighbouring basins with available data. The results were then validated against an independ
ent time series of flow (Habte et al., 2(07). Member catchments in the same homogenous group 
were split into calibration catchments and validation catchments. Each homogeneous group has 
a set of optimized WaSiM-Ell! parameters, derived from simultaneous calibration and validation 
of gauged rivers in the respective homogeneous groups. Figure 6.7 shows a general fTamework of 
the couple model. In the coupled trained SOM and calibrated WaSiM-ETH programme, the 
trained SOM will assign the ungauged catchment into one of the five hydrologically homoge
nous groups based on the catchment characteristics (e.g. red broken line in Figure 
6.7). The coupled programme then transfers the whole set of optimized WaSiM-ETH parame
ters from the homogeneous group (to which the ungauged river belongs) to the ungauged river, 
and WaSiM-ETH calculates the daily flow for this ungauged river. 
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Hydrological processes in the Blue Nile 

Soil and Water Assessment Tool-Water Balance model 

The SWAT-WB model is applied to the Ethiopian portion of the BNB that drains via the main 
stem of the river at EI Diem on the border with Sudan (the Rahad and Dinder sub-basins that 
drain the north-east region ofEthiopia were not considered; Figures 6.8 and 6.9). Results show 
that incorporating a redefinition of how hydrological response units (HRUs) are delineated 
combined with a water balance to predict run-off can improve our analysis of when and where 
run-off and erosion occur in a watershed. The SWKf-WB model is initialized for eight sub
basins ranging in size from 1.3 to 174,000 km'.The model is calibrated for flow using a priori 
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Figure 6.8 Digital elevation model reaches, sub-basins and sub-basin outlets initialized in the Blue Nile 
Basin SWAT model. Also displayed is the distribution of meteorological stations used in the 
model 
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Figure 6.9 Land use/land cover (a) in the Blue Nile Basin (ENTRO) and (b) the Wetness Index used in 
the Blue Nile SWAT model 
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topographic information and validated with an independent time series of flows, The tested 
methodology captures the observed hydrological processes quite well across multiple scales, 
while significantly reducing the calibration data requirements. The reduced data requirements 
for model initialization have implications for model applicability to other data-scarce regions. 
Finally, a discussion of the implications of watershed management with respect to the model 
results is presented. 

Summarized Soil and Water Assessment Tool model description 

The SWAT model is a river basin model created to run with readily available input data so that 
general initialization of the modelling system does not require overly complex data-gathering, 
or calibration. SWAT was originally intended to model long-term run-off and nutrient losses 
from rural watersheds, particularly those dominated by agriculture (Arnold et al., 1998). SWAT 
requires data on soils, land use/management information and elevation to drive flows and direct 
sub-basin routing, While these data may be spatially explicit, SWAT lumps the parameters into 
HRUs, effectively ignoring the underlying spatial distribution. Traditionally, HRUs are defined 
by the coincidence of soil type and land use. Simulations require meteorological input data 
including precipitation, temperature and solar radiation. Model input data and parameters were 
parsed using the ARCSWAT 9.2 interface. The interface combines SWAT with the ARCGIS 
platform to assimilate the soil input map, digital elevation model (OEM) and land use coverage, 

Soil and lVater Assessment Tool-Water Balance saturation excess model 

The modified SWAT model uses a water balance in place of the CN for each HRU to predict 
run-off losses. Based on this water balance, run-off, interflow and infiltration volumes are calcu
lated. While these assumptions simplifY the processes that govern water movement through 
porous media (in particular, partly saturated regions), for a daily model, water balance models 
have been shown to better capture the observed responses in numerous African v.ratersheds 
(Guswa et ai" 2(02). For Ethiopia, water balance models outperfixm models that are developed 
in temperate regions (Liu et aI" 2008; Collick et ai., 2009; Steenhuis et ai., 2009;White et al., 
2011). For the cornplete model description see Easton et aI., 2010 and White et al., 2011. In its 
most basic form, the water balance detlnes a threshold moisture content over which the soil 
protlle can neither store nor infiltrate more precipitation; thus additional water becomes either 
run-off or interflm,' (q,J: 

_{(O - f)Jd., + P, - Lit, for: P, > (e, f).,)d, - nt, 
,],;" - () (6.1)for: P, 5: ((J, - f),t )d, EI, 

where e (em' em") is the soil moisture content above which storm run-off is generated, e", 
(em' cm·1

) is the current soil moisture content, d, (mm) is the depth of the soil profile, P, (mm) 
is the precipitation and (mm) is the evapotranspiration. In SWAT, there is no lateral reuting 
of interflow among watershed units, and thus no means to distribute watershed moisture; thus 
Equation 6.1 will result in the same excess moisture volume everywhere in the watershed given 
similar soil protlles. 

To account for the differences in run-off generation in different areas of the basin, the 
following threshold function for storm run-otf that varies across the watershed as a function of 
topography is used (Easton et aI., 2(10): 
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Hydrological processes in the Blue Nile 

r, + (P/Js - OJ (6.2) 

where, p, is a number between 0 and 1 that reduces fl, to account for water that should drain 
down slope, and is a function of the topography (as defined by a topographic wetness index, A; 
e.g. Beven and Kirkby, 1979). Here it is assumed that the distribution of p, values is inversely 
proportional to the soil topographic index (A,) averaged across each wetness index class or 
HRU and that the lowest A, (A,,) corresponds to the highest A, (AJ 

(6.3) 

Easton et al. (2010) showed that using the baseflow index reliably constrained the distribution 
of these p, values. Note that Equation 6.2 applies only to the first soil layer. Once the soil profile 
has been adequately filled, Equation 6.2 can be used to write all expression for the depth of 
run-off, q..,., (mm) Irom a wetness index, i: 

_{P, r,d. Jor P, > r,d, 
(6.4)qJ{" - 0 Jor P, S; r,d, 

While the approach outlined above captures the spatial patterns ofVSAs and the distribution 
of run-off and infiltrating fractions in the watersheds, Easton et al. (2010) noted there is a need 
to maintain more water in the wettest wetness index classes tor evapotranspiration, and 
proposed adjusting of the available water content (AWe.; of the soil layers below the first soil 
layer (recall that the top soil layer is used to establish our run-off threshold; Equation 6.2) so 
that higher topographic wetness index classes retain water longer (i.e. have Af·VC adjusted 
higher), and the lower classes dry faster (i.e. AJVC is adjusted lower by normalizing by the mean 
Pi value, similar to Easton et ai., 2008, for example), 

Note that, since this model generates run-off when the soil is above saturation, total rainf;lll 
determines the amount of run-ofl'. When results are presented on a daily basis rainfall intensity 
is assumed to be inconsequential. It is possible that under high-intensity storms storms 
with rainfall intensities greater than the intiltration capacity of the soil) the model might under
predict the amount of nlll-off generated, but this is the exception rather than the rule (Liu et 

al., 2008; Engda, 20(9). 

Model calibration 

The water balance methodology requires very little direct calibration, as most parameters can 
be determined a priori. Soil storage was calculated as the product ofsoil porosity and soil depth 
from the soils data. Soil storage values were distributed via the A described above, and the effec
tive depth coefficient (p" varies from 0 to 1) was adjusted along a gradient in A values as in 
Equation 6.3. Here it is assumed that the distribution of A, values is inversely proportional to A, 
(averaged across each wetness index class or HRU) and that the lowest A, (AJ corresponds to 
the highest A, (A,,). In this manner, the p, distribution requires information on the topography 
(and perhaps on soil). If a streamflow record is available baseflow separation can be employed 
to further parameterize the modeL 

In constraining or 'calibrating' g, it is recognized that, since the p-value controls how much 
precipitation is routed as run-oft~ it also controls how much precipitation water can enter the 
soil for a given wetness index class. Thus, a larger fraction of the precipitation that falls on an 
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Tahle 6,2 	Effective depth coefficients (p) tor each wetness index class and watershed in the Blue Nile 
Basin model from Equation 6.3. The IIB is determined from baseflow separated run-ofl' of 
the streamflow hydrograph and distributed via the topographic wetness index, A 
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measured data a 10 (most 0.22 0,20 0,16 0.15 0.26 0.24 0,24 0.15 
however, the tin saturated) 
estimated preci!9 0.58 0.51 0.24 0,22 0,31 0.41 0.43 0,25 

8 0.75 0,68 0.31 0.26 0.40 0.51 0.53 0.30 than precipitatit 

7 0,87 0.78 0.35 0.30 0.47 0.59 0.62 0.32 cent of the me 
6 0.<)7 0,87 0,37 0,34 0.61 0.66 0.69 0.36 shows a large gl 
5 1.00 0.94 0.43 0.38 0.75 0,72 0.75 0.44 	 approximately; 
4 1.00 1.00 0.57 0.42 0.89 0.80 0.83 0.46 
3 1.00 1.00 0.64 0.47 1.00 0,88 0.91 0.57 
2 1.00 1.00 0,74 0,52 1.00 0.99 1.00 0.86 
1 (least 1.00 1.00 1.00 0.63 1.00 1.00 l.OO 1.00 Table 6.3 Calibr, 
saturated) tion, r' 
*IlB 0.84 0.80 0.48 0.37 0.67 0.68 0.70 0.47 

1\'or(': *IIu partltions I1101sture in tlle above saturation to run-off and infiltlJtion 

area with a large p, will potentially recharge the groundwater than in an area with a small g. 
As a first approximation, then, assume p, can be equated with the ratio ofgroundwater recharge, 
qll to total excess precipitation, q", (i.e, precipitation falling on wetness class i that eventually 
reaches the watershed outlet). Baseflow is determined directly from the digital signal filter base
flow separation technique of several years of daily streamflow hydrographs (Hewlett and 
Hibbert, 1967; Arnold et al., 1995; for greater detail see Easton et al., 2010). 

The primary difference between the eN-based SWAT and the water-balance-based SWAT 
is that run-off is explicitly attributable to source areas according to a wetness index distribu
tion, rather than by land use and soil infiltration properties as in original SWAT (Easton et aI" 

20(8). Soil properties that control saturation-excess run-off generation (saturated conductivity, 
soil depth) aftect run-off distribution in SWAT-WE since they are included in the wetness 
index via Equation 6.4. Flow calibration \vas validated against an independent time series that 
consisted of at least one half of the observed data. To ensure good calibration, the calibrated 
result maximized the coefficient of determination (i) and the Nash-Sutcliffe efficiency 
Nash and Sutcliffe, 1970). Table 6.2 summarizes the calibrated p, values for each wetness index 
class while Table 6.3 summarizes the calibration statistics. Since flow data at some of the avail
able gauge locations were available at the monthly time step (Angar, Kessie,Jemma) and daily 
at others (Anjeni, Gumera, Ribb, North Marawi, El Diem; Figure 6.10), the model was run for 
both time steps, and the results presented accordingly. 

Results 

Run-off from saturated areas and subsurface flow from the watershed were summed at the 
watershed outlet to predict streamflow. The graphical comparison of the modelled and meas
ured daily streamflow at the El Diem station at the Sudan border (e.g. integrating all sub-basins 
above) is shown in Figure 6.10, The model was able to capture the dynamics of the basin 
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response well = 0.87, r 0.92;Table 6.3; Figure 6.10). Both baseflow and storm flow were 
correctly predicted with a slight over-prediction ofpeak flows and a slight under-prediction of 
low flows (Table 6.3); however, all statistical evaluation criteria indicated the model predicted 
well. In fact, all calibrated sub-basins predicted streamflow at the outlet reasonably well (e.g. 
Table 6.3). Model predictions showed good accuracy (EN, ranged from 0.53 to 0.92) with 
measured data across all sites except at Kessie, where the water budget could not be closed; 
however, the timing of £low was well captured. The error at Kessie appears to be due to under
estimated precipitation at the nearby gauges, as measured flow was nearly 15 per cent higher 
than precipitation evapotranspiration (P - E). Nevertheless, the prediction is within 25 per 
cent of the measured data. Observed normalized discharge (Table 6.3) across the sub-basins 
shows a large gradient, from 210 mm at Jemma to 563 mm at Anjeni. For the basin as a whole, 
approximately 25 per cent of precipitation exits at EI Diem of the BNB. 

Table 6.3 Calibrated sub-basins (Figure 6.10), drainage area, model fit statistics (coefficient of determina

tion, r' and Nash-Sutcliffe Efficiency, EN')' and observed and predicted flows 
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Table 6.2 shows the adjusted p, parameter values (e.g. Equation 6.3) for the various >UL'-U,'>lW 

in the BNB; these values are scalable, and can be determined from topographical' 
(i.e. the p, values vary by sub-basin, but the distribution is similar). 

The SWAT-WB model was able to accurately reproduce the various watershed responses 
across the range of scales. Notice, for instance, that the hydrographs at the Sudan border 
(174,000 km2

: Figure 6.12), Gumera (1200km'; Figure 6.11) and Anjeni (1.13km'; Figure 6.12) 
reasonably capture the observed dynamics both the rising and receding limbs and the peak 
flows are well represented). There was a slight tendency for the model to bottom out during 
baseflow, probably due to overestimated ET, but the error is relatively minor. More importandy, 
the model captures peak flows, which are critical to correctly predict to assess sediment trans

port and erosion. 
Run-off and streamflow are highly variable both temporally (over the course of a year; 

Figure 6.10) and spatially (across the Ethiopian Blue Nile Basin; Table 6.3). Daily watershed 
outlet discharge during the monsoonal season at Gumera is four to eight times larger than at 
the Sudan border (after normalizing tlow by the contributing area; Figures 6.10 and 6.11). 
Anjeni, the smallest watershed had the largest normalized discharge, often over 20 mm d:l 

during the rainy season (Figure 6.12). Discharges (in million m' y-') intuitively increase with 
drainage area, but precipitation also has a impact on overall sub-basin discharge. Both 
Jemma and Angar are of approximately the same size (Jemma is actually slightly bigger), yet 
discharge from Angar is nearly 40 per cent higher, a result of the higher precipitation in the 
southwestern region of the basin. Temporally, outlet discharges typically peak in August for the 
small and medium-sized basins and slightly later for Kessie and the Sudan border, a result ofthe 
lag time for lateral flows to travel the greater distances. Due to the monsoonal nature of the 
basin, there is a very low level of base flow in all tributaries and, in fact, some dry up completely 
during the dry season, which the model reliably predicts, which is important when consider
ing the impacts of intervention measures to augment flow. 

Run-off losse:; predicted by the model varied across the basin as well, and were gener.illy 
well corroborated by run-off estimates from baseflow separation of the streamflow hydrograph. 
Predicted rUl1-ofrIosses (averaged across the entire sub-basin) varied from as low as 13 mm y-' 
for the BNB as a whole sub-basin to as high as 44 mm in Anjeni. Of course, small areas of 
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Figure 6.11 Daily observed and predicted discharge from the Gumera sub-basin. See Table 6.3 for 
model performance for the Ribb and North Marawi sub-basins 
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Figure 6.12 Daily observed and predicted discharge from the Anjeni micro-watershed 

the individual sub-basins produce significantly higher run-off losses and oiliers significantly 
less. These differences are well reflected in the average baseflow coefficient (IIB) for the sub
basins Cfable 6.2). Notice that IIB for Anjeni (smallest watershed, highest run-off losses) is 
significantly lower than for Gumera and the Sudan border (Table 6.2).A lower ~, reflects less 
average available storage in the watershed (i.e. more rainfall ends up as run-off). This II" value 
is determined from the baseflow separation of the streamflow hydrograph (Hewlett and 
Hibbert, 1967), and can thus be considered a measured parameter. It is also interesting to note 
how the distribution of the individual p, differs between basins. For instance, there are more 
classes (areas) in Anjeni and Angar that are prone to saturate, and would thus have lower avail
able storage, and create more run-off. This is relatively clear in looking at the streamflow 
hydrographs (Figures 6.10-6.13) where the smaller watersheds tend to generate substantially 
more surface run-off. Conversely, as basin size increases (Kessie, Sudan border) the saturated 
fraction of the watershed decreases, and more of the rainfall infiltrates, resulting in greater base
flow, as reflected in the higher IIB, or, in terms of run-off, the smaller upland watersheds have 
higher run-off losses than the larger basins. This is not unexpected, as the magnitude of the 
subsurface flow paths have been shown to increase with the size of the watershed, because as 
watershed size increases more and more deep flow paths become activated in transport 
(Steenhuis et al., 2009). 

The ability to predict the spatial distribution of run-off source areas has important implica
tions for watershed intervention, where information on the location and extent ofsource areas 
is critical to effectively managing the landscape. For instance, the inset of Figure 6.13 shows the 
predicted spatial distribution of average run-off losses for the Gumera watershed for an 
October 1997 event.As is evident from Figure 6,13, run-off losses vary quite dramatically across 
the landscape; some HRUs are expected to produce no run-off, while others have produced 
more than 90 mm of run-off. When averaged spatially at the outlet, run-off losses were 22 mm 
(Table 6.3). Other sub-basins responded in a similar manner. These results are consistent with 
data collected in the Anjeni SCRP watershed (SCRP, 2000; Ashagre, 2009), which show that 
run-off losses roughly correlate with topography. 
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Figure 6.13 	Predicted average yearly spatial distribution of discharge in the BNB (main) and predicted 
run-off distribution in the Gumer.! sub-watershed for an October 1997 event (inset) 

Discussion 

Flows in the Blue Nile Basin in Ethiopia show large variability across scales and locations. 
Sediment and water yields from areas of the basin range more than an order of magnitude (a 
more in-depth discussion of sediment is given in Chapter 7). The use of the modified SWAT
WB model that more correctly predicts the spatial location of run-off source areas is a critical 
step in improving the ability to manage landscapes, such as the Blue Nile, to provide clean 
water supplies, enhance agricultural productivity and reduce the loss of valuable topsoil. 
Obviously, the hydrological routines in many of the large-scale watershed models do not incor
porate the appropriate mechanistic processes to reliably predict when and where run-off 
occurs, at least at the scale needed to manage complex landscapes. For instance, the standard 
SWAT model predicts run off to occur more or less equally across the various land covers (e.g. 
croplands produce approximately equal run-off losses and pastureland produces approximately 
equal erosive losses, etc.) provided they have similar soils and land management practices 
throughout the basin. The modified version of SWAT used here that different areas 
of a basin (or landscape) produce different run-off losses and thus different sediment losses. 
However, all crops or pasture within a wetness index class in the modified SWAT produce the 
same run-off or erosion losses. 

Water balance models are consistent with the saturation excess run-off process because the 
run-off is related to the available watershed storage capacity and the amount of precipitation. 
The implementation of water balances into run-off calculations in the BNB is not a novel 
concept and others have shown that water balance type models often perform better than more 
complicated models in Ethiopian-type landscapes (Johnson and Curtis, 1994; Conway, 1997; Liu 
et al., 2008). However, these water balance models are typically run on a monthly or yearly time 
steps because the models are generally not capable ofseparating inter- and surface run-off 
flow. To truly model erosion and sediment transport (of great interest in the BNB) , large events 
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must be captured by the model and daily simulations are required to do so.Thus SWAT-WE not 
only maintains a water balance but also calculates the interflow and the base flow component, 
and gives a reasonable prediction of peak flows. SWAT-WE is therefore more likely to be capa
ble of predicting erosion source areas and sediment transport than either SWAT-CN or water 
budget models with monthly time steps. Indeed, Tebebu et al. (2010) found gully formation and 
erosion in the Ethiopian Highlands to be related to water table levels and saturation dynamics, 
which SWAT-WE reliably predicts. 

Conclusions 

A modified version of the SWAT model appropriate for monsoonal climates is presented as a 
tool to quantity the hydrological and sediment fluxes in the ENB, Ethiopia.The model requires 
very little direct calibration to obtain good hydrological predictions. All parameters needed to 
initialize the model to predict run-off are obtained from baseflow separation of the hydrograp h 
(IIJ, and from topographical information derived from a DEM and soils data (A). The reduced 
parameterization/ calibration effort is valuable in environments such as Ethiopia where limited 
data are available to build and test complicated biogeochemical models. 

The model quantified the relative contributions from the various areas of dIe ENE with 
relatively good accuracy, particularly at a daily time step. The analysis showed that not all sub
basins contribute flow or run-off equally. In fact, there is large variation in average flow and 
run-off across the watershed. Additionally, within anyone watershed the model indicates that 
there are areas that produce significantly more run-off and areas that produce almost no run
off, which, of course, has implications for the management of these areas. This model is helpful 
to identify areas of a basin that are susceptible to erosive or other contaminant losses, due to 
high run-off production. These areas should be targeted for management intervention to 
improve water quality. 
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